87 research outputs found

    Suv4-20h Histone Methyltransferases Promote Neuroectodermal Differentiation by Silencing the Pluripotency-Associated Oct-25 Gene

    Get PDF
    Post-translational modifications (PTMs) of histones exert fundamental roles in regulating gene expression. During development, groups of PTMs are constrained by unknown mechanisms into combinatorial patterns, which facilitate transitions from uncommitted embryonic cells into differentiated somatic cell lineages. Repressive histone modifications such as H3K9me3 or H3K27me3 have been investigated in detail, but the role of H4K20me3 in development is currently unknown. Here we show that Xenopus laevis Suv4-20h1 and h2 histone methyltransferases (HMTases) are essential for induction and differentiation of the neuroectoderm. Morpholino-mediated knockdown of the two HMTases leads to a selective and specific downregulation of genes controlling neural induction, thereby effectively blocking differentiation of the neuroectoderm. Global transcriptome analysis supports the notion that these effects arise from the transcriptional deregulation of specific genes rather than widespread, pleiotropic effects. Interestingly, morphant embryos fail to repress the Oct4-related Xenopus gene Oct-25. We validate Oct-25 as a direct target of xSu4-20h enzyme mediated gene repression, showing by chromatin immunoprecipitaton that it is decorated with the H4K20me3 mark downstream of the promoter in normal, but not in double-morphant, embryos. Since knockdown of Oct-25 protein significantly rescues the neural differentiation defect in xSuv4-20h double-morphant embryos, we conclude that the epistatic relationship between Suv4-20h enzymes and Oct-25 controls the transit from pluripotent to differentiation-competent neural cells. Consistent with these results in Xenopus, murine Suv4-20h1/h2 double-knockout embryonic stem (DKO ES) cells exhibit increased Oct4 protein levels before and during EB formation, and reveal a compromised and biased capacity for in vitro differentiation, when compared to normal ES cells. Together, these results suggest a regulatory mechanism, conserved between amphibians and mammals, in which H4K20me3-dependent restriction of specific POU-V genes directs cell fate decisions, when embryonic cells exit the pluripotent state

    Candidate Gene Screen in the Red Flour Beetle Tribolium Reveals Six3 as Ancient Regulator of Anterior Median Head and Central Complex Development

    Get PDF
    Several highly conserved genes play a role in anterior neural plate patterning of vertebrates and in head and brain patterning of insects. However, head involution in Drosophila has impeded a systematic identification of genes required for insect head formation. Therefore, we use the red flour beetle Tribolium castaneum in order to comprehensively test the function of orthologs of vertebrate neural plate patterning genes for a function in insect head development. RNAi analysis reveals that most of these genes are indeed required for insect head capsule patterning, and we also identified several genes that had not been implicated in this process before. Furthermore, we show that Tc-six3/optix acts upstream of Tc-wingless, Tc-orthodenticle1, and Tc-eyeless to control anterior median development. Finally, we demonstrate that Tc-six3/optix is the first gene known to be required for the embryonic formation of the central complex, a midline-spanning brain part connected to the neuroendocrine pars intercerebralis. These functions are very likely conserved among bilaterians since vertebrate six3 is required for neuroendocrine and median brain development with certain mutations leading to holoprosencephaly

    X-MyT1, a Xenopus C2HC-type zinc finger protein with a regulatory function in neuronal differentiation.

    No full text
    X-MyT1 is a C2HC-type zinc finger protein that we find to be involved in the primary selection of neuronal precursor cells in Xenopus. Expression of this gene is positively regulated by the bHLH protein X-NGNR-1 and negatively regulated by the Notch/Delta signal transduction pathway. X-MyT1 is able to promote ectopic neuronal differentiation and to confer insensitivity to lateral inhibition, but only in cooperation with bHLH transcription factors. Inhibition of X-MyT1 function inhibits normal neurogenesis as well as ectopic neurogenesis caused by overexpression of X-NGNR-1. On the basis of these findings, we suggest that X-MyT1 is a novel, essential element in the cascade of events that allows cells to escape lateral inhibition and to enter the pathway that leads to terminal neuronal differentiation.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Tissue expansion of lung bronchi due to tissue processing for histology – A comparative analysis of paraffin versus frozen sections in a pig model

    No full text
    Aim Tissue shrinking due to fixation and processing is well known. However, the degree of shrinking varies significantly with the tissue type as well as the processing method and is not well studied in various tissues. In daily pathological routine workflow, histological specimens from frozen and paraffin sections are performed from the same tissue. In the present study we compared the thickness of bronchus walls obtained from paraffin and frozen sections. Methods: Pig lungs were frozen in ventilated condition in liquid nitrogen and 36 bronchi were isolated after dissection. Frozen sections of 5 mu m thickness were performed and the remaining tissue was fixed and embedded in paraffin after fixation in 4% formalin. Frozen and paraffin sections from the same cutting edge were analysed after haematoxylin and eosin staining by measuring the wall thickness of the bronchi using high power fields of 400-fold magnification. In each bronchus 40 measurements were implemented at different wall positions distributed over the entire wall area. Summed up, in each group 1440 wall measurements were performed in total. Statistical analysis was conducted using the Wilcoxon test and t-test as well as Pearson's correlation coefficient with a significance level at P < 0.05. Results: The bronchial wall thickness was significantly (p < 0.001) smaller in frozen sections (median: 0.50 mm; min: 0.37 mm; max: 0.97 mm) compared to paraffin sections (median: 0.58 mm; min: 0.35 mm; max: 1.06 mm). The median difference between paraffin and frozen sections was 0.05 mm (min: -0.11 mm; max: 0.22 mm). The wall thickness ratio of both groups was as follows: frozen/paraffin section = 0.8609, thus yielding a difference between paraffin and frozen of 13.91%. High correlation was found between wall thickness measurements on paraffin and frozen sections (R = 0.87, p < 0.001). Conclusions: The bronchus wall thickness in the frozen section was 14% reduced compared to the paraffin section. In routine pathology as well as in scientific studies these results are of relevance, as airway wall thickness represents a relevant marker for pathological interpretation, especially using CT image techniques

    Whole-mount in situ hybridization and immunohistochemistry in Xenopus embryos.

    No full text
    Xenopus is a favorable experimental model in developmental biology. With its fast and external development, high number of progeny and large size, early embryos are well suited for micromanipulation to study the function of genes with relevance to human diseases. In this chapter, we present a combined method for lineage tracing and whole-mount in situ hybridization. In addition, we present protocols for immunohistochemistry and assays to monitor the cell proliferation and apoptosis in whole embryos
    • …
    corecore