6,375 research outputs found

    Temperature dependence of electron-phonon interactions in vanadium

    Get PDF
    First-principles calculations were used to study the Fermi surface of body-centered cubic vanadium at elevated temperatures. Supercell calculations accounted for effects of thermal atom displacements on band energies, and band unfolding was used to project the spectral weight of the electron states into the Brillouin zone of a standard bcc unit cell. An electronic topological transition (ETT, or Lifshitz transition) occurred near the Γ point with increasing temperature, but the large thermal smearings from the atomic disorder and the Fermi-Dirac distribution reduced the effect of this ETT on the electron-phonon interactions. The phonon dispersions showed thermal stiffening of their Kohn anomalies near the Γ point and of the longitudinal N phonon mode. In general the effects of the ETT were overcome by the thermal smearing of the Fermi surface that reduces the spanning vector densities for anomalous phonon modes

    From electronic structure to catalytic activity: A single descriptor for adsorption and reactivity on transition-metal carbides

    Get PDF
    Adsorption and catalytic properties of the polar (111) surface of transition-metal carbides (TMC's) are investigated by density-functional theory. Atomic and molecular adsorption are rationalized with the concerted-coupling model, in which two types of TMC surface resonances (SR's) play key roles. The transition-metal derived SR is found to be a single measurable descriptor for the adsorption processes, implying that the Br{\o}nsted-Evans-Polanyi relation and scaling relations apply. This gives a picture with implications for ligand and vacancy effects and which has a potential for a broad screening procedure for heterogeneous catalysts.Comment: 5 pages, 3 figure

    Two-Level Systems in Evaporated Amorphous Silicon

    Full text link
    In ee-beam evaporated amorphous silicon (aa-Si), the densities of two-level systems (TLS), n0n_{0} and P‾\overline{P}, determined from specific heat CC and internal friction Q−1Q^{-1} measurements, respectively, have been shown to vary by over three orders of magnitude. Here we show that n0n_{0} and P‾\overline{P} are proportional to each other with a constant of proportionality that is consistent with the measurement time dependence proposed by Black and Halperin and does not require the introduction of additional anomalous TLS. However, n0n_{0} and P‾\overline{P} depend strongly on the atomic density of the film (nSin_{\rm Si}) which depends on both film thickness and growth temperature suggesting that the aa-Si structure is heterogeneous with nanovoids or other lower density regions forming in a dense amorphous network. A review of literature data shows that this atomic density dependence is not unique to aa-Si. These findings suggest that TLS are not intrinsic to an amorphous network but require a heterogeneous structure to form

    Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO2_2

    Get PDF
    Although the rutile structure of TiO2_2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000\,K. Inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2_2 from 300 to 1373\,K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizing the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d3d electrons of Ti and 2p2p electrons of O atoms. With thermal expansion, the energy variation in this "phonon-tracked hybridization" flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures

    \u3csup\u3e99m\u3c/sup\u3eTc-Labeled C2A Domain of Synaptotagmin I as a Target-Specific Molecular Probe for Noninvasive Imaging of Acute Myocardial Infarction

    Get PDF
    Abstract: The exposure of phosphatidylserine (PtdS) is a common molecular marker for both apoptosis and necrosis and enables the simultaneous detection of these distinct modes of cell death. Our aim was to develop a radiotracer based on the PtdS-binding activity of the C2A domain of synaptotagmin I and assess 99mTc-C2A-GST (GST is glutathione S-transferase) using a reperfused acute myocardial infarction (AMI) rat model. Methods: The binding of C2A-GST toward apoptosis and necrosis was validated in vitro. After labeling with 99mTc via 2-iminothiolane thiolation, radiochemical purity and radiostability were tested. Pharmacokinetics and biodistribution were studied in healthy rats. The uptake of 99mTc-C2A-GST within the area at risk was quantified by direct γ-counting, whereas nonspecific accumulation was estimated using inactivated 99mTc-C2A-GST. In vivo planar imaging of AMI in rats was performed on a γ-camera using a parallel-hole collimator. Radioactivity uptake was investigated by region-of-interest analysis, and postmortem tetrazolium staining versus autoradiography. Results: Fluorescently labeled and radiolabeled C2A-GST bound both apoptotic and necrotic cells. 99mTc-C2A-GST had a radiochemical purity of \u3e98% and remained stable. After intravenous injection, the uptake in the liver and kidneys was significant. For 99mTc-C2A-GST, radioactivity uptake in the area at risk reached between 2.40 and 2.63 %ID/g (%ID/g is percentage injected dose per gram) within 30 min and remained plateaued for at least 3 h. In comparison, with the inactivated tracer the radioactivity reached 1.06 ± 0.49 %ID/g at 30 min, followed by washout to 0.52 ± 0.23 %ID/g. In 7 of 7 rats, the infarct was clearly identifiable as focal uptake in planar images. At 3 h after injection, the infarct-to-lung ratios were 2.48 ± 0.27, 1.29 ± 0.09, and 1.46 ± 0.04 for acute-infarct rats with 99mTc-C2A-GST, sham-operated rats with 99mTc-C2A-GST, and acute-infarct rats with 99mTc-C2A-GST-NHS (NHS is N-hydroxy succinimide), respectively. The distribution of radioactivity was confirmed by autoradiography and histology. Conclusion: The C2A domain of synaptotagmin I labeled with fluorochromes or a radioisotope binds to both apoptotic and necrotic cells. Ex vivo and in vivo data indicate that, because of elevated vascular permeability, both specific binding and passive leakage contribute to the accumulation of the radiotracer in the area at risk. However, the latter component alone is insufficient to achieve detectable target-to-background ratios with in vivo planar imaging

    Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    Full text link
    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode

    Most \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e MicroRNAs are Individually Not Essential for Development or Viability

    Get PDF
    MicroRNAs (miRNAs), a large class of short noncoding RNAs found in many plants and animals, often act to post-transcriptionally inhibit gene expression. We report the generation of deletion mutations in 87 miRNA genes in Caenorhabditis elegans, expanding the number of mutated miRNA genes to 95, or 83% of known C. elegans miRNAs. We find that the majority of miRNAs are not essential for the viability or development of C. elegans, and mutations in most miRNA genes do not result in grossly abnormal phenotypes. These observations are consistent with the hypothesis that there is significant functional redundancy among miRNAs or among gene pathways regulated by miRNAs. This study represents the first comprehensive genetic analysis of miRNA function in any organism and provides a unique, permanent resource for the systematic study of miRNAs
    • …
    corecore