12 research outputs found

    Like mother, like child : investigating perinatal and maternal health stress in post-medieval London.

    Get PDF
    Post-Medieval London (sixteenth-nineteenth centuries) was a stressful environment for the poor. Overcrowded and squalid housing, physically demanding and risky working conditions, air and water pollution, inadequate diet and exposure to infectious diseases created high levels of morbidity and low life expectancy. All of these factors pressed with particular severity on the lowest members of the social strata, with burgeoning disparities in health between the richest and poorest. Foetal, perinatal and infant skeletal remains provide the most sensitive source of bioarchaeological information regarding past population health and in particular maternal well-being. This chapter examined the evidence for chronic growth and health disruption in 136 foetal, perinatal and infant skeletons from four low-status cemetery samples in post-medieval London. The aim of this study was to consider the impact of poverty on the maternal-infant nexus, through an analysis of evidence of growth disruption and pathological lesions. The results highlight the dire consequences of poverty in London during this period from the very earliest moments of life

    The offspring quantity–quality trade-off and human fertility variation

    No full text
    The idea that trade-offs between offspring quantity and quality shape reproductive behaviour has long been central to economic perspectives on fertility. It also has a parallel and richer theoretical foundation in evolutionary ecology. We review the application of the quantity–quality trade-off concept to human reproduction, emphasizing distinctions between clutch size and lifetime fertility, and the wider set of forces contributing to fertility variation in iteroparous and sexually reproducing species like our own. We then argue that in settings approximating human evolutionary history, several factors limit costly sibling competition. Consequently, while the optimization of quantity–quality trade-offs undoubtedly shaped the evolution of human physiology setting the upper limits of reproduction, we argue it plays a modest role in accounting for socio-ecological and individual variation in fertility. Only upon entering the demographic transition can fertility limitation be clearly interpreted as strategically orientated to advancing offspring quality via increased parental investment per child, with low fertility increasing descendant socio-economic success, although not reproductive success. We conclude that existing economic and evolutionary literature has often overemphasized the centrality of quantity–quality trade-offs to human fertility variation and advocate for the development of more holistic frameworks encompassing alternative life-history trade-offs and the evolved mechanisms guiding their resolution

    i-PI 2.0: a universal force engine for advanced molecular simulations

    No full text
    Progress in the atomic-scale modeling of matter over the past decade has been tremendous. This progress has been brought about by improvements in methods for evaluating interatomic forces that work by either solving the electronic structure problem explicitly, or by computing accurate approximations of the solution and by the development of techniques that use the Born–Oppenheimer (BO) forces to move the atoms on the BO potential energy surface. As a consequence of these developments it is now possible to identify stable or metastable states, to sample configurations consistent with the appropriate thermodynamic ensemble, and to estimate the kinetics of reactions and phase transitions. All too often, however, progress is slowed down by the bottleneck associated with implementing new optimization algorithms and/or sampling techniques into the many existing electronic-structure and empirical-potential codes. To address this problem, we are thus releasing a new version of the i-PI software. This piece of software is an easily extensible framework for implementing advanced atomistic simulation techniques using interatomic potentials and forces calculated by an external driver code. While the original version of the code (Ceriotti et al., 2014) was developed with a focus on path integral molecular dynamics techniques, this second release of i-PI not only includes several new advanced path integral methods, but also offers other classes of algorithms. In other words, i-PI is moving towards becoming a universal force engine that is both modular and tightly coupled to the driver codes that evaluate the potential energy surface and its derivatives. Program summary: Program Title: i-PI Program Files doi: http://dx.doi.org/10.17632/x792grbm9g.1 Licensing provisions: GPLv3, MIT Programming language: Python External routines/libraries: NumPy Nature of problem: Lowering the implementation barrier to bring state-of-the-art sampling and atomistic modeling techniques to ab initio and empirical potentials programs. Solution method: Advanced sampling methods, including path-integral molecular dynamics techniques, are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic coordinates from the Python interface, and to return the forces and energy that are used to integrate the equations of motion, optimize atomic geometries, etc. Restrictions: This code does not compute interatomic potentials, although the distribution includes sample driver codes that can be used to test different techniques using a few simple model force fields

    Pressure and momentum field investigation of a centrifugal pump through dynamic loading of a semi-open impeller

    Get PDF
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references: p. 58-59.Issued also on microfiche from Lange Micrographics.A study was performed to investigate the variation in the forces and moments acting on the front and back sides of a semi-open impeller. Three rotational speeds and five volumetric flow rates for each speed were identified as the operating conditions for the pump after generating performance curves. The pressure distribution inside the pump housing was measured through pressure taps drilled in the front and back housing. These pressure measurements were obtained for distinct geometric configurations comprising of varying positions of the impeller and the front housing. Pressure contour plots were generated for all the operating conditions and an asymmetric pressure distribution was observed in the pump housing. Higher pressures were witnessed near the volute tongue. Forces acting on the impeller were calculated by integrating the pressures acting on it as measured by the pressure taps. A net axial thrust on the impeller, trying to push it towards the suction side, was observed, which decreased in magnitude with increasing back clearance for a certain fixed value of the front clearance. Moments acting on the front and back sides of the impeller were noticed to approach smaller magnitudes for higher volumetric flow rates. A geometric configuration was identified for better overall performance of the pump
    corecore