8,389 research outputs found

    Physical Modeling of Process-Machine-Interactions in Micro Machining

    Get PDF
    Increasing demands for smaller and smarter devices in a variety of applications requires the investigation of process-machine-interactions in micro manufacturing to ensure process results that guarantee part functionality. One approach is the use of simulation-based physical models. In this contribution, methods for the physical modeling of high-precision air bearing and magnetic bearing spindles are presented in addition to a kinematic model of the micro milling process. Both models are superimposed in order to carry out investigations of the slot bottom surface roughness in micro end milling. The results show that process-machine-interactions in micro manufacturing can be modeled by the superposition of a physical model of the machine tool spindle taking cutting forces into consideration and a purely kinematic model of the machining process, providing the necessary tools for a variety of further investigations into process-machine-interactions in micro manufacturing

    Extinction of cue-evoked food seeking recruits a GABAergic interneuron ensemble in the dorsal medial prefrontal cortex of mice

    Get PDF
    Animals must quickly adapt food-seeking strategies to locate nutrient sources in dynamically changing environments. Learned associations between food and environmental cues that predict its availability promote food-seeking behaviors. However, when such cues cease to predict food availability, animals undergo 'extinction' learning, resulting in the inhibition of food-seeking responses. Repeatedly activated sets of neurons, or 'neuronal ensembles', in the dorsal medial prefrontal cortex (dmPFC) are recruited following appetitive conditioning and undergo physiological adaptations thought to encode cue-reward associations. However, little is known about how the recruitment and intrinsic excitability of such dmPFC ensembles are modulated by extinction learning. Here, we used in vivo 2-Photon imaging in male Fos-GFP mice that express green fluorescent protein (GFP) in recently behaviorally-activated neurons to determine the recruitment of activated pyramidal and GABAergic interneuron mPFC ensembles during extinction. During extinction, we revealed a persistent activation of a subset of interneurons which emerged from a wider population of interneurons activated during the initial extinction session. This activation pattern was not observed in pyramidal cells, and extinction learning did not modulate the excitability properties of activated neurons. Moreover, extinction learning reduced the likelihood of reactivation of pyramidal cells activated during the initial extinction session. Our findings illuminate novel neuronal activation patterns in the dmPFC underlying extinction of food-seeking, and in particular, highlight an important role for interneuron ensembles in this inhibitory form of learning

    Serendipitous discovery of a projected pair of QSOs separated by 4.5 arcsec on the sky

    Full text link
    We present the serendipitous discovery of a projected pair of quasi-stellar objects (QSOs) with an angular separation of Δθ=4.50\Delta\theta =4.50 arcsec. The redshifts of the two QSOs are widely different: one, our programme target, is a QSO with a spectrum consistent with being a narrow line Seyfert 1 AGN at z=2.05z=2.05. For this target we detect Lyman-α\alpha, \ion{C}{4}, and \ion{C}{3]}. The other QSO, which by chance was included on the spectroscopic slit, is a Type 1 QSO at a redshift of z=1.68z=1.68, for which we detect \ion{C}{4}, \ion{C}{3]} and \ion{Mg}{2}. We compare this system to previously detected projected QSO pairs and find that only about a dozen previously known pairs have smaller angular separation.Comment: 4 pages, 3 figures. Accepted for publication in A

    Determining the fraction of reddened quasars in COSMOS with multiple selection techniques from X-ray to radio wavelengths

    Full text link
    The sub-population of quasars reddened by intrinsic or intervening clouds of dust are known to be underrepresented in optical quasar surveys. By defining a complete parent sample of the brightest and spatially unresolved quasars in the COSMOS field, we quantify to which extent this sub-population is fundamental to our understanding of the true population of quasars. By using the available multiwavelength data of various surveys in the COSMOS field, we built a parent sample of 33 quasars brighter than J=20J=20 mag, identified by reliable X-ray to radio wavelength selection techniques. Spectroscopic follow-up with the NOT/ALFOSC was carried out for four candidate quasars that had not been targeted previously to obtain a 100\% redshift completeness of the sample. The population of high AVA_V quasars (HAQs), a specific sub-population of quasars selected from optical/near-infrared photometry, is found to contribute 21%5+921\%^{+9}_{-5} of the parent sample. The full population of bright spatially unresolved quasars represented by our parent sample consists of 39%8+939\%^{+9}_{-8} reddened quasars defined by having AV>0.1A_V>0.1, and 21%5+921\%^{+9}_{-5} of the sample having E(BV)>0.1E(B-V)>0.1 assuming the extinction curve of the Small Magellanic Cloud. We show that the HAQ selection works well for selecting reddened quasars, but some are missed because their optical spectra are too blue to pass the grg-r color cut in the HAQ selection. This is either due to a low degree of dust reddening or anomalous spectra. We find that the fraction of quasars with contributing light from the host galaxy is most dominant at z1z \lesssim 1. At higher redshifts the population of spatially unresolved quasars selected by our parent sample is found to be representative of the full population at J<20J<20 mag. This work quantifies the bias against reddened quasars in studies that are based solely on optical surveys.Comment: 22 pages, 10 figures, accepted for publication in A&A. The ArXiv abstract has been shortened for it to be printabl

    Ages for illustrative field stars using gyrochronology: viability, limitations and errors

    Full text link
    We here develop an improved way of using a rotating star as a clock, set it using the Sun, and demonstrate that it keeps time well. This technique, called gyrochronology, permits the derivation of ages for solar- and late-type main sequence stars using only their rotation periods and colors. The technique is clarified and developed here, and used to derive ages for illustrative groups of nearby, late-type field stars with measured rotation periods. We first demonstrate the reality of the interface sequence, the unifying feature of the rotational observations of cluster and field stars that makes the technique possible, and extends it beyond the proposal of Skumanich by specifying the mass dependence of rotation for these stars. We delineate which stars it cannot currently be used on. We then calibrate the age dependence using the Sun. The errors are propagated to understand their dependence on color and period. Representative age errors associated with the technique are estimated at ~15% (plus possible systematic errors) for late-F, G, K, & early-M stars. Ages derived via gyrochronology for the Mt. Wilson stars are shown to be in good agreement with chromospheric ages for all but the bluest stars, and probably superior. Gyro ages are then calculated for each of the active main sequence field stars studied by Strassmeier and collaborators where other ages are not available. These are shown to be mostly younger than 1Gyr, with a median age of 365Myr. The sample of single, late-type main sequence field stars assembled by Pizzolato and collaborators is then assessed, and shown to have gyro ages ranging from under 100Myr to several Gyr, and a median age of 1.2Gyr. Finally, we demonstrate that the individual components of the three wide binaries XiBooAB, 61CygAB, & AlphaCenAB yield substantially the same gyro ages.Comment: 58 pages, 18 color figures, accepted for publication in The Astrophysical Journal; Age uncertainties slightly modified upon correcting an algebraic error in Section

    Epistemic Vigilance

    Get PDF
    Humans massively depend on communication with others, but this leaves them open to the risk of being accidentally or intentionally misinformed. To ensure that, despite this risk, communication remains advantageous, humans have, we claim, a suite of cognitive mechanisms for epistemic vigilance. Here we outline this claim and consider some of the ways in which epistemic vigilance works in mental and social life by surveying issues, research and theories in different domains of philosophy, linguistics, cognitive psychology and the social sciences

    Oscillation of linear ordinary differential equations: on a theorem by A. Grigoriev

    Full text link
    We give a simplified proof and an improvement of a recent theorem by A. Grigoriev, placing an upper bound for the number of roots of linear combinations of solutions to systems of linear equations with polynomial or rational coefficients.Comment: 16 page

    Formation Scenario for Wide and Close Binary Systems

    Full text link
    Fragmentation and binary formation processes are studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \simeq 10^22 cm^-3). We calculated 147 models with different initial magnetic, rotational, and thermal energies, and the amplitudes of the non-axisymmetric perturbation. In a collapsing cloud, fragmentation is mainly controlled by the initial ratio of the rotational to the magnetic energy, regardless of the initial thermal energy and amplitude of the non-axisymmetric perturbation. When the clouds have large rotational energies in relation to magnetic energies, fragmentation occurs in the low-density evolution phase (10^12 cm^-3 < n < 10^15 cm^-3) with separations of 3-300 AU. Fragments that appeared in this phase are expected to evolve into wide binary systems. On the other hand, fragmentation does not occur in the low-density evolution phase, when initial clouds have large magnetic energies in relation to the rotational energies. In these clouds, fragmentation only occurs in the high-density evolution phase (n > 10^17 cm^-3) after the clouds experience significant reduction of the magnetic field owing to Ohmic dissipation in the period of 10^12 cm^-3 < n < 10^15 cm^-3. Fragments appearing in this phase have separations of < 0.3 AU, and are expected to evolve into close binary systems. As a result, we found two typical fragmentation epochs, which cause different stellar separations. Although these typical separations are disturbed in the subsequent gas accretion phase, we might be able to observe two peaks of binary separations in extremely young stellar groups.Comment: 45 pages,12 figures, Submitted to ApJ, For high resolution figures see http://www2.scphys.kyoto-u.ac.jp/~machidam/protostar/proto/main-astroph.pd
    corecore