431 research outputs found

    Sleep and cardiometabolic comorbidities in the obstructive sleep apnoea-COPD overlap syndrome: data from the European Sleep Apnoea Database

    Get PDF
    Aim The impact of obstructive sleep apnoea (OSA)-COPD overlap syndrome (OVS) on sleep quality and cardiovascular outcomes has not been fully explored. We aimed to compare clinical and polysomnographic characteristics of patients with OVS versus patients with OSA, and to explore pathophysiological links between OVS and comorbidities. Study design and methods This cross-sectional analysis initially included data from 5600 patients with OSA and lung function in the European Sleep Apnoea Database. Two subgroups of patients with OSA (n=1018) or OVS (n=509) were matched (2:1) based on sex, age, body mass index and apnoea-hypopnea index at baseline. Results After matching, patients with OVS had more severe hypoxia, lower sleep efficiency and presented with higher prevalences of arterial hypertension, ischaemic heart disease and heart failure compared with patients with OSA. OVS was associated with a significant decrease in sleep efficiency (mean difference (beta) -3.0%, 95% CI -4.7 to -1.3) and in nocturnal mean peripheral oxyhaemoglobin saturation (S-pO2) (beta -1.1%, 95% CI -1.5 to -0.7). Further analysis revealed that a decrease in forced expiratory volume in 1 s and arterial oxygen tension was related to a decrease in sleep efficiency and in mean nocturnal S-pO2. A COPD diagnosis increased the odds of having heart failure by 1.75 (95% CI 1.15-2.67) and systemic hypertension by 1.36 (95% CI 1.07-1.73). Nocturnal hypoxia was strongly associated with comorbidities; the mean nocturnal S-pO2 and T90 (increase in time below S-pO2 of 90%) were associated with increased odds of systemic hypertension, diabetes and heart failure but the oxygen desaturation index was only related to hypertension and diabetes. Conclusion Patients with OVS presented with more sleep-related hypoxia, a reduced sleep quality and a higher risk for heart failure and hypertension.The ESADA study group received unrestricted funding grants from the Respironics and Resmed Foundations, and an unrestricted collaboration grant from Bayer AG

    Clinical Phenotypes and Comorbidity in European Sleep Apnoea Patients

    Get PDF
    Background Clinical presentation phenotypes of obstructive sleep apnoea (OSA) and their association with comorbidity as well as impact on adherence to continuous positive airway pressure (CPAP) treatment have not been established. Methods A prospective follow-up cohort of adult patients with OSA (apnoea-hypopnoea index (AHI) of 655/h) from 17 European countries and Israel (n = 6,555) was divided into four clinical presentation phenotypes based on daytime symptoms labelled as excessive daytime sleepiness ("EDS") and nocturnal sleep problems other than OSA (labelled as "insomnia"): 1) EDS (daytime+/nighttime-), 2) EDS/insomnia (daytime+/nighttime+), 3) non-EDS/noninsomnia (daytime-/nighttime-), 4) and insomnia (daytime-/nighttime+) phenotype. Results The EDS phenotype comprised 20.7%, the non-EDS/non-insomnia type 25.8%, the EDS/ insomnia type 23.7%, and the insomnia phenotype 29.8% of the entire cohort. Thus, clinical presentation phenotypes with insomnia symptoms were dominant with 53.5%, but only 5.6% had physician diagnosed insomnia. Cardiovascular comorbidity was less prevalent in the EDS and most common in the insomnia phenotype (48.9% vs. 56.8%, p<0.001) despite more severe OSA in the EDS group (AHI 35.0\ub125.5/h vs. 27.9\ub122.5/h, p<0.001, respectively). Psychiatric comorbidity was associated with insomnia like OSA phenotypes independent of age, gender and body mass index (HR 1.5 (1.188-1.905), p<0.001). The EDS phenotype tended to associate with higher CPAP usage (22.7 min/d, p = 0.069) when controlled for age, gender, BMI and sleep apnoea severity. Conclusions Phenotypes with insomnia symptoms comprised more than half of OSA patients and were more frequently linked with comorbidity than those with EDS, despite less severe OSA. CPAP usage was slightly higher in phenotypes with EDS

    Arterial bicarbonate is associated with hypoxic burden and uncontrolled hypertension in obstructive sleep apnea - The ESADA cohort

    Get PDF
    Objective: Blood bicarbonate concentration plays an important role for obstructive sleep apnea (OSA) patients to maintain acid-base balance. We investigated the association between arterial standard bicarbonate ([HCO3-]) and nocturnal hypoxia as well as comorbid hypertension in OSA. Methods: A cross-sectional analysis of 3329 patients in the European Sleep Apnea Database (ESADA) was performed. Arterial blood gas analysis and lung function test were performed in conjunction with polysomnographic sleep studies. The 4% oxygen desaturation index (ODI), mean and minimum oxygen saturation (SpO2), and percentage of time with SpO2 below 90% (T90%) were used to reflect nocturnal hypoxic burden. Arterial hypertension was defined as a physician diagnosis of hypertension with ongoing antihypertensive medication. Hypertensive patients with SBP/DBP below or above 140/90 mmHg were classified as controlled-, uncontrolled hypertension, respectively. Results: The [HCO3-] level was normal in most patients (average 24.0 ± 2.5 mmol/L). ODI, T90% increased whereas mean and minimum SpO2 decreased across [HCO3-] tertiles (ANOVA, p = 0.030, &lt;0.001, &lt;0.001, and &lt;0.001, respectively). [HCO3-] was independently associated with ODI, mean SpO2, minimum SpO2, and T90% after adjusting for confounders (β value [95%CI]: 1.21 [0.88–1.54], −0.16 [-0.20 to −0.11], −0.51 [-0.64 to −0.37], 1.76 [1.48–2.04], respectively, all p &lt; 0.001). 1 mmol/L elevation of [HCO3-] was associated with a 4% increased odds of uncontrolled hypertension (OR: 1.04 [1.01–1.08], p = 0.013). Conclusion: We first demonstrated an independent association between [HCO3-] and nocturnal hypoxic burden as well as uncontrolled hypertension in OSA patients. Bicarbonate levels as an adjunctive measure provide insight into the pathophysiology of hypertension in OSA

    Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations

    Get PDF
    OBJECTIVE—Using the genome-wide association approach, we recently identified the glucokinase regulatory protein gene (GCKR, rs780094) region as a novel quantitative trait locus for plasma triglyceride concentration in Europeans. Here, we sought to study the association of GCKR variants with metabolic phenotypes, including measures of glucose homeostasis, to evaluate the GCKR locus in samples of non-European ancestry and to fine- map across the associated genomic interval

    Decreased olfactory discrimination is associated with impulsivity in healthy volunteers

    Get PDF
    In clinical populations, olfactory abilities parallel executive function, implicating shared neuroanatomical substrates within the ventral prefrontal cortex. In healthy individuals, the relationship between olfaction and personality traits or certain cognitive and behavioural characteristics remains unexplored. We therefore tested if olfactory function is associated with trait and behavioural impulsivity in nonclinical individuals. Eighty-three healthy volunteers (50 females) underwent quantitative assessment of olfactory function (odour detection threshold, discrimination, and identifcation). Each participant was rated for trait impulsivity index using the Barratt Impulsiveness Scale and performed a battery of tasks to assess behavioural impulsivity (Stop Signal Task, SST; Information Sampling Task, IST; Delay Discounting). Lower odour discrimination predicted high ratings in non-planning impulsivity (Barratt Non-Planning impulsivity subscale); both, lower odour discrimination and detection threshold predicted low inhibitory control (SST; increased motor impulsivity). These fndings extend clinical observations to support the hypothesis that defcits in olfactory ability are linked to impulsive tendencies within the healthy population. In particular, the relationship between olfactory abilities and behavioural inhibitory control (in the SST) reinforces evidence for functional overlap between neural networks involved in both processes. These fndings may usefully inform the stratifcation of people at risk of impulse-control-related problems and support planning early clinical interventions

    Weight and metabolic effects of cpap in obstructive sleep apnea patients with obesity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obstructive sleep apnea (OSA) is associated with obesity, insulin resistance (IR) and diabetes. Continuous positive airway pressure (CPAP) rapidly mitigates OSA in obese subjects but its metabolic effects are not well-characterized. We postulated that CPAP will decrease IR, ghrelin and resistin and increase adiponectin levels in this setting.</p> <p>Methods</p> <p>In a pre- and post-treatment, within-subject design, insulin and appetite-regulating hormones were assayed in 20 obese subjects with OSA before and after 6 months of CPAP use. Primary outcome measures included glucose, insulin, and IR levels. Other measures included ghrelin, leptin, adiponectin and resistin levels. Body weight change were recorded and used to examine the relationship between glucose regulation and appetite-regulating hormones.</p> <p>Results</p> <p>CPAP effectively improved hypoxia. However, subjects had increased insulin and IR. Fasting ghrelin decreased significantly while leptin, adiponectin and resistin remained unchanged. Forty percent of patients gained weight significantly. Changes in body weight directly correlated with changes in insulin and IR. Ghrelin changes inversely correlated with changes in IR but did not change as a function of weight.</p> <p>Conclusions</p> <p>Weight change rather than elimination of hypoxia modulated alterations in IR in obese patients with OSA during the first six months of CPAP therapy.</p

    Mortality Risk of Hypnotics: Strengths and Limits of Evidence

    Full text link
    Sleeping pills, more formally defined as hypnotics, are sedatives used to induce and maintain sleep. In a review of publications for the past 30 years, descriptive epidemiologic studies were identified that examined the mortality risk of hypnotics and related sedative-anxiolytics. Of the 34 studies estimating risk ratios, odds ratios, or hazard ratios, excess mortality associated with hypnotics was significant (p &lt; 0.05) in 24 studies including all 14 of the largest, contrasted with no studies at all suggesting that hypnotics ever prolong life. The studies had many limitations: possibly tending to overestimate risk, such as possible confounding by indication with other risk factors; confusing hypnotics with drugs having other indications; possible genetic confounders; and too much heterogeneity of studies for meta-analyses. There were balancing limitations possibly tending towards underestimates of risk such as limited power, excessive follow-up intervals with possible follow-up mixing of participants taking hypnotics with controls, missing dosage data for most studies, and over-adjustment of confounders. Epidemiologic association in itself is not adequate proof of causality, but there is proof that hypnotics cause death in overdoses; there is thorough understanding of how hypnotics euthanize animals and execute humans; and there is proof that hypnotics cause potentially lethal morbidities such as depression, infection, poor driving, suppressed respiration, and possibly cancer. Combining these proofs with consistent evidence of association, the great weight of evidence is that hypnotics cause huge risks of decreasing a patient's duration of survival

    Natural products in modern life science

    Get PDF
    With a realistic threat against biodiversity in rain forests and in the sea, a sustainable use of natural products is becoming more and more important. Basic research directed against different organisms in Nature could reveal unexpected insights into fundamental biological mechanisms but also new pharmaceutical or biotechnological possibilities of more immediate use. Many different strategies have been used prospecting the biodiversity of Earth in the search for novel structure–activity relationships, which has resulted in important discoveries in drug development. However, we believe that the development of multidisciplinary incentives will be necessary for a future successful exploration of Nature. With this aim, one way would be a modernization and renewal of a venerable proven interdisciplinary science, Pharmacognosy, which represents an integrated way of studying biological systems. This has been demonstrated based on an explanatory model where the different parts of the model are explained by our ongoing research. Anti-inflammatory natural products have been discovered based on ethnopharmacological observations, marine sponges in cold water have resulted in substances with ecological impact, combinatory strategy of ecology and chemistry has revealed new insights into the biodiversity of fungi, in depth studies of cyclic peptides (cyclotides) has created new possibilities for engineering of bioactive peptides, development of new strategies using phylogeny and chemography has resulted in new possibilities for navigating chemical and biological space, and using bioinformatic tools for understanding of lateral gene transfer could provide potential drug targets. A multidisciplinary subject like Pharmacognosy, one of several scientific disciplines bridging biology and chemistry with medicine, has a strategic position for studies of complex scientific questions based on observations in Nature. Furthermore, natural product research based on intriguing scientific questions in Nature can be of value to increase the attraction for young students in modern life science
    corecore