106 research outputs found

    Pubertal induction and transition to adult sex hormone replacement in patients with congenital pituitary or gonadal reproductive hormone deficiency : an Endo-ERN clinical practice guideline

    Get PDF
    An Endo-European Reference Network guideline initiative was launched including 16 clinicians experienced in endocrinology, pediatric and adult and 2 patient representatives. The guideline was endorsed by the European Society for Pediatric Endocrinology, the European Society for Endocrinology and the European Academy of Andrology. The aim was to create practice guidelines for clinical assessment and puberty induction in individuals with congenital pituitary or gonadal hormone deficiency. A systematic literature search was conducted, and the evidence was graded according to the Grading of Recommendations, Assessment, Development and Evaluation system. If the evidence was insufficient or lacking, then the conclusions were based on expert opinion. The guideline includes recommendations for puberty induction with oestrogen or testosterone. Publications on the induction of puberty with follicle-stimulation hormone and human chorionic gonadotrophin in hypogonadotropic hypogonadism are reviewed. Specific issues in individuals with Klinefelter syndrome or androgen insensitivity syndrome are considered. The expert panel recommends that pubertal induction or sex hormone replacement to sustain puberty should be cared for by a multidisciplinary team. Children with a known condition should be followed from the age of 8 years for girls and 9 years for boys. Puberty induction should be individualised but considered at 11 years in girls and 12 years in boys. Psychological aspects of puberty and fertility issues are especially important to address in individuals with sex development disorders or congenital pituitary deficiencies. The transition of these young adults highlights the importance of a multidisciplinary approach, to discuss both medical issues and social and psychological issues that arise in the context of these chronic conditions.Peer reviewe

    Complex X chromosome rearrangement associated with multiorgan autoimmunity

    Get PDF
    BACKGROUND: Turner syndrome, a congenital condition that affects 1/2,500 births, results from absence or structural alteration of the second sex chromosome. Turner syndrome is usually associated with short stature, gonadal dysgenesis and variable dysmorphic features. The classical 45,X karyotype accounts approximately for half of all patients, the remainder exhibit mosaicism or structural abnormalities of the X chromosome. However, complex intra-X chromosomal rearrangements involving more than three breakpoints are extremely rare. RESULTS: We present a unique case of a novel complex X chromosome rearrangement in a young female patient presenting successively a wide range of autoimmune diseases including insulin dependent diabetes mellitus, Hashimoto's thyroiditis, celiac disease, anaemia perniciosa, possible inner ear disease and severe hair loss. For the genetic evaluation, conventional cytogenetic analysis and FISH with different X specific probes were initially performed. The complexity of these results and the variety of autoimmune problems of the patient prompted us to identify the exact composition and breakpoints of the rearranged X as well as methylation status of the X chromosomes. The high resolution array-CGH (assembly GRCh37/hg19) detected single copy for the whole chromosome X short arm. Two different sized segments of Xq arm were present in three copies: one large size of 80,3 Mb from Xq11.1 to Xq27.3 region and another smaller (11,1 Mb) from Xq27.3 to Xq28 region. An 1,6 Mb Xq27.3 region of the long arm was present in two copies. Southern blot analysis identified a skewed X inactivation with approximately 70:30 % ratios of methylated/unmethylated fragments. The G-band and FISH patterns of the rearranged X suggested the aspect of a restructured i(Xq) chromosome which was shattered and fortuitously repaired. The X-STR genotype analysis of the family detected that the patient inherited intact maternal X chromosome and a rearranged paternal X chromosome. The multiple Xq breakages and fusions as well as inverted duplication would have been expected to cause a severe Turner phenotype. However, the patient lacks many of the classic somatic features of Turner syndrome, instead she presented multiorgan autoimmune diseases. CONCLUSIONS: The clinical data of the presented patient suggest that fragmentation of the i(Xq) chromosome elevates the risk of autoimmune diseases

    Genome-Wide Analysis of Glucocorticoid Receptor Binding Regions in Adipocytes Reveal Gene Network Involved in Triglyceride Homeostasis

    Get PDF
    Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR) binding regions (GBRs) in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG) synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1), lipolysis (Lipe, Mgll), lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2) and storage (S3-12). Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases

    Side differences in the degree of mosaicism of the buccal mucosa in Turner syndrome

    No full text
    Abstract Background The aim was to investigate if there were any differences in the degree of mosaicism between the left‐ and right‐hand sides of the buccal mucosa in women with Turner syndrome. Methods Buccal smears were taken on the left‐ and right‐hand sides at the same time for genetic analyses with fluorescence in situ hybridization in women with Turner syndrome, n = 20; 10 with and 10 without mosaicism based on the blood karyotype, and one control. A difference in the degree of mosaicism ≥5% between the sides was considered as an actual difference and <5% as equivalent. Results Of 20, 10 (50%) had ≥ 5% difference in the degree of mosaicism between the left‐ and right‐hand sides of the buccal mucosa. The mean difference was 9.1% and the median was 4.5%, range 1%–38%. The control with ordinary female karyotype had no side difference. Conclusion There was an intraorganic mosaicism of the buccal mucosa with a side difference in the degree of mosaicism of up to 38% in women with Turner syndrome. When mosaicism is strongly suspected, but not confirmed by the blood karyotype, it is recommended that buccal smears from both sides of the oral cavity should be analyzed
    corecore