631 research outputs found

    The evolving biology of cell reprogramming

    Get PDF
    Modern stem cell biology has achieved a transformation that was thought by many to be every bit as unattainable as the ancient alchemists' dream of transforming base metals into gold. Exciting opportunities arise from the process known as ‘cellular reprogramming’ in which cells can be reliably changed from one tissue type to another. This is enabling novel approaches to more deeply investigate the fundamental basis of cell identity. In addition, new opportunities have also been created to study (perhaps even to treat) human genetic and degenerative diseases. Specific cell types that are affected in inherited disease can now be generated from easily accessible cells from the patient and compared with equivalent cells from healthy donors. The differences in cellular phenotype between the two may then be identified, and assays developed to establish therapies that prevent the development or progression of disease symptoms. Cellular reprogramming also has the potential to create new cells to replace those whose death or dysfunction causes disease symptoms. For patients suffering from inherited cases of degenerative diseases like Parkinson's disease or amyotrophic lateral sclerosis (also known as motor neuron disease), the future realization of such cell-based therapies would truly be worth its weight in gold. However, before this enormous potential can become a reality, several significant biological and technical challenges must be overcome. Furthermore, to maintain the credibility of the scientific community with the general public, it is important that hope-inspiring advances are not over-hyped. The papers in this issue of the Philosophical Transactions of the Royal Society B: Biological Sciences cover many areas relevant to this topic. In this Introduction, we provide an overall context in which to consider these individual papers

    Dynamic Interpretation of Hedgehog Signaling in the Drosophila Wing Disc

    Get PDF
    Morphogens are classically defined as molecules that control patterning by acting at a distance to regulate gene expression in a concentration-dependent manner. In the Drosophila wing imaginal disc, secreted Hedgehog (Hh) forms an extracellular gradient that organizes patterning along the anterior–posterior axis and specifies at least three different domains of gene expression. Although the prevailing view is that Hh functions in the Drosophila wing disc as a classical morphogen, a direct correspondence between the borders of these patterns and Hh concentration thresholds has not been demonstrated. Here, we provide evidence that the interpretation of Hh signaling depends on the history of exposure to Hh and propose that a single concentration threshold is sufficient to support multiple outputs. Using mathematical modeling, we predict that at steady state, only two domains can be defined in response to Hh, suggesting that the boundaries of two or more gene expression patterns cannot be specified by a static Hh gradient. Computer simulations suggest that a spatial “overshoot” of the Hh gradient occurs, i.e., a transient state in which the Hh profile is expanded compared to the Hh steady-state gradient. Through a temporal examination of Hh target gene expression, we observe that the patterns initially expand anteriorly and then refine, providing in vivo evidence for the overshoot. The Hh gene network architecture suggests this overshoot results from the Hh-dependent up-regulation of the receptor, Patched (Ptc). In fact, when the network structure was altered such that the ptc gene is no longer up-regulated in response to Hh-signaling activation, we found that the patterns of gene expression, which have distinct borders in wild-type discs, now overlap. Our results support a model in which Hh gradient dynamics, resulting from Ptc up-regulation, play an instructional role in the establishment of patterns of gene expression

    Oocyte expression with injection of purified T7 RNA polymerase.

    Get PDF
    International audienceThe Xenopus oocyte is a widely used system for protein expression. Investigators have had the choice between two different techniques: injection into the cytoplasm of in vitro transcribed complementary RNA (cRNA) or injection into the nucleus of complementary DNA (cDNA). We report on a third expression technique that is based on the combined injection of cDNA and purified T7 RNA polymerase directly into the cytoplasm of oocytes

    Transcription Profile Analysis Reveals That Zygotic Division Results in Uneven Distribution of Specific Transcripts in Apical/Basal Cells of Tobacco

    Get PDF
    BACKGROUND: Asymmetric zygotic division in higher plants results in the formation of an apical cell and a basal cell. These two embryonic cells possess distinct morphologies and cell developmental fates. It has been proposed that unevenly distributed cell fate determinants and/or distinct cell transcript profiles may be the underlying reason for their distinct fates. However, neither of these hypotheses has convincing support due to technical limitations. METHODOLOGY/PRINCIPAL FINDINGS: Using laser-controlled microdissection, we isolated apical and basal cells and constructed cell type-specific cDNA libraries. Transcript profile analysis revealed difference in transcript composition. PCR and qPCR analysis confirmed that transcripts of selected embryogenesis-related genes were cell-type preferentially distributed. Some of the transcripts that existed in zygotes were found distinctly existed in apical or basal cells. The cell type specific de novo transcription was also found after zygotic cell division. CONCLUSIONS/SIGNIFICANCE: Thus, we found that the transcript diversity occurs between apical and basal cells. Asymmetric zygotic division results in the uneven distribution of some embryogenesis related transcripts in the two-celled proembryos, suggesting that a differential distribution of some specific transcripts in the apical or basal cells may involve in guiding the two cell types to different developmental destinies

    Gradient lithography of engineered proteins to fabricate 2D and 3D cell culture microenvironments

    Get PDF
    Spatial patterning of proteins is a valuable technique for many biological applications and is the prevailing tool for defining microenvironments for cells in culture, a required procedure in developmental biology and tissue engineering research. However, it is still challenging to achieve protein patterns that closely mimic native microenvironments, such as gradient protein distributions with desirable mechanical properties. By combining projection dynamic mask lithography and protein engineering with non-canonical photosensitive amino acids, we demonstrate a simple, scalable strategy to fabricate any user-defined 2D or 3D stable gradient pattern with complex geometries from an artificial extracellular matrix (aECM) protein. We show that the elastic modulus and chemical nature of the gradient profile are biocompatible and allow useful applications in cell biological research

    The Origins of Concentric Demyelination: Self-Organization in the Human Brain

    Get PDF
    Baló's concentric sclerosis is a rare atypical form of multiple sclerosis characterized by striking concentric demyelination patterns. We propose a robust mathematical model for Baló's sclerosis, sharing common molecular and cellular mechanisms with multiple sclerosis. A reconsideration of the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon led us to propose a chemotactic cellular model for this disease. Rings of demyelination appear as a result of self-organization processes, and closely mimic Baló lesions. According to our results, homogeneous and concentric demyelinations may be two different macroscopic outcomes of a single fundamental immune disorder. Furthermore, in chemotactic models, cellular aggressivity appears to play a central role in pattern formation

    Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    Get PDF
    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria

    Tsukushi Modulates Xnr2, FGF and BMP Signaling: Regulation of Xenopus Germ Layer Formation

    Get PDF
    Cell-cell communication is essential in tissue patterning. In early amphibian development, mesoderm is formed in the blastula-stage embryo through inductive interactions in which vegetal cells act on overlying equatorial cells. Members of the TGF-beta family such as activin B, Vg1, derrière and Xenopus nodal-related proteins (Xnrs) are candidate mesoderm inducing factors, with further activity to induce endoderm of the vegetal region. TGF-beta-like ligands, including BMP, are also responsible for patterning of germ layers. In addition, FGF signaling is essential for mesoderm formation whereas FGF signal inhibition has been implicated in endoderm induction. Clearly, several signaling pathways are coordinated to produce an appropriate developmental output; although intracellular crosstalk is known to integrate multiple pathways, relatively little is known about extracellular coordination
    corecore