17 research outputs found
Mechanical mismatch between Ras transformed and untransformed epithelial cells
The organization of the actin cytoskeleton plays a key role in regulating cell mechanics. It is fundamentally altered during transformation, affecting how cells interact with their environment. We investigated mechanical properties of cells expressing constitutively active, oncogenic Ras (Ras(V12)) in adherent and suspended states. To do this, we utilized atomic force microscopy and a microfluidic optical stretcher. We found that adherent cells stiffen and suspended cells soften with the expression of constitutively active Ras. The effect on adherent cells was reversed when contractility was inhibited with the ROCK inhibitor Y-27632, resulting in softer Ras(V12) cells. Our findings suggest that increased ROCK activity as a result of Ras has opposite effects on suspended and adhered cells. Our results also establish the importance of the activation of ROCK by Ras and its effect on cell mechanics
Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils
The formation of insoluble β-sheet-rich protein structures known as amyloid fibrils is associated with numerous neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. A detailed understanding of the molecular structure of the fibril surface is of interest as the first contact with the physiological environment in vivo and plays a decisive role in biological activity and associated toxicity. Recent studies reveal that the inherent sensitivity and specificity of tip-enhanced Raman scattering (TERS) renders this technique a compelling method for fibril surface analysis at the single-particle level. Here, the reproducibility of TERS is demonstrated, indicating its relevance for detecting molecular variations. Consequently, individual fibrils are systematically investigated at nanometer spatial resolution. Spectral parameters were obtained by band-fitting, particularly focusing on the identification of the secondary structure via the amide III band and the differentiation of hydrophobic and hydrophilic domains on the surface. In addition multivariate data analysis, specifically the N-FINDR procedure, was employed to generate structure-specific maps. The ability of TERS to localize specific structural domains on fibril surfaces shows promise to the development of new fibril dissection strategies and can be generally applied to any (bio)chemical surface when structural variations at the nanometer level are of interest
Reflection-mode TERS on Insulin Amyloid Fibrils with Top-Visual AFM Probes
Tip-enhanced Raman spectroscopy provides chemical information while raster scanning samples with topographical detail. The coupling of atomic force microscopy and Raman spectroscopy in top illumination optical setup is a powerful configuration to resolve nanometer structures while collecting reflection mode backscattered signal. Here, we theoretically calculate the field enhancement generated by TER spectroscopy with top illumination geometry and we apply the technique to the characterization of insulin amyloid fibrils. We experimentally confirm that this technique is able to enhance the Raman signal of the polypeptide chain by a factor of 105, thus revealing details down to few molecules resolutio
Journey to the East : intercultural adaptation of international students in China
The number of international students studying in Mainland China was comparatively small three decades ago. However, more international students have chosen to study Chinese language and culture in Mainland China due to its booming economy and flourishing employment opportunities in the last ten years. Bevis (2014) informs that the number of American students choosing to study in colleges and universities across Mainland China is quickly rising. Many international students have become interested in studying and living in Mainland China especially after the 2008 Beijing Olympic