19 research outputs found

    Scaling of discrete elemnet model parameters for cohesionless and cohesive solid

    Get PDF
    One of the major shortcomings of discrete element modelling (DEM) is the computational cost required when the number of particles is huge, especially for fine powders and/or industry scale simulations. This study investigates the scaling of model parameters that is necessary to produce scale independent predictions for cohesionless and cohesive solid under quasi-static simulation of confined compression and unconfined compression to failure in uniaxial test. A bilinear elasto-plastic adhesive frictional contact model was used. The results show that contact stiffness (both normal and tangential) for loading and unloading scales linearly with the particle size and the adhesive force scales very well with the square of the particle size. This scaling law would allow scaled up particle DEM model to exhibit bulk mechanical loading response in uniaxial test that is similar to a material comprised of much smaller particles. This is a first step towards a mesoscopic representation of a cohesive powder that is phenomenological based to produce the key bulk characteristics of a cohesive solid and has the potential to gain considerable computational advantage for industry scale DEM simulations.Comment: accepted in Powder Technology, 32 pages, 14 figure

    Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials

    No full text
    Predictions in the behavior of granular materials using Discrete Element Methods (DEM) hinge on the employed interaction potentials. Here we introduce a data driven, Bayesian framework to quantify DEM predictions. Our approach relies on experimentally measured coefficients of restitution for single steel particle-wall collisions. The calibration data entail both tangential and normal coefficients of restitution, for varying impact angles and speeds of the bouncing particle. The parametric uncertainty in multiple Force-Displacement models is estimated using an enhanced Transitional Markov Chain Monte Carlo implemented efficiently on parallel computer architectures. In turn, the parametric model uncertainties are propagated to predict Quantities of Interest (QoI) for two testbed applications: silo discharge and vibration induced mass-segregation. This work demonstrates that the classical way of calibrating DEM potentials, through parameter optimization, is insufficient and it fails to provide robust predictions. The present Bayesian framework provides robust predictions for the behavior of granular materials using DEM simulations. Most importantly the results demonstrate the importance of including parametric and modeling uncertainties in the potentials employed in Discrete Element Methods. (C) 2014 Elsevier B.V. All rights reserved
    corecore