237 research outputs found

    Towards Dead Time Inclusion in Neuronal Modeling

    Full text link
    A mathematical description of the refractoriness period in neuronal diffusion modeling is given and its moments are explicitly obtained in a form that is suitable for quantitative evaluations. Then, for the Wiener, Ornstein-Uhlenbeck and Feller neuronal models, an analysis of the features exhibited by the mean and variance of the first passage time and of refractoriness period is performed.Comment: 12 pages, 1 figur

    Correlating Gas Permeability and Young’s Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy

    Get PDF
    The relationship, during physical aging, between the transport properties and Young’s modulus for films of polymers of intrinsic microporosity (PIM) was investigated using pure gas permeability and atomic force microscopy (AFM) in force spectroscopy mode. Excellent agreement of Young’s modulus measured for the archetypal PIM-1 with values obtained by other techniques in the literature, confirms the suitability of AFM force spectroscopy for the rapid and convenient assessment of mechanical properties. Results from different polymers including PIM-1 and five ultrapermeable benzotriptycene-based PIMs provide direct evidence that size selectivity is strongly correlated to Young’s modulus. In addition, film samples of one representative PIM (PIM-DTFM-BTrip) were subjected to both normal physical aging and to accelerated aging by thermal conditioning under vacuum for comparison. Accelerated aging resulted in a similar decrease in permeability and increase in Young’s modulus as normal aging, however, significant differences suggest that thermally induced accelerated aging occurs throughout the bulk of the polymer film whereas normal aging occurs predominantly at the surface of the film. For all PIMs, the increased in film rigidity upon aging led to an increase in gas size selectivity

    New Zinc-Based Active Chitosan Films: Physicochemical Characterization, Antioxidant, and Antimicrobial Properties

    Get PDF
    The improvement of the antioxidant and antimicrobial activities of chitosan (CS) films can be realized by incorporating transition metal complexes as active components. In this context, bioactive films were prepared by embedding a newly synthesized acylpyrazolonate Zn(II) complex, [Zn(QPhtBu)2(MeOH)2], into the eco-friendly biopolymer CS matrix. Homogeneous, amorphous, flexible, and transparent CS@Znn films were obtained through the solvent casting method in dilute acidic solution, using different weight ratios of the Zn(II) complex to CS and characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman, and scanning electron microscopy (SEM) techniques. The X-ray single-crystal analysis of [Zn(QPhtBu)2(MeOH)2] and the evaluation of its intermolecular interactions with a protonated glucosamine fragment through hydrogen bond propensity (HBP) calculations are reported. The effects of the different contents of the [Zn(QPhtBu)2(MeOH)2] complex on the CS biological proprieties have been evaluated, proving that the new CS@Znn films show an improved antioxidant activity, tested according to the DPPH method, with respect to pure CS, related to the concentration of the incorporated Zn(II) complex. Finally, the CS@Znn films were tried out as antimicrobial agents, showing an increase in antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus) with respect to pure CS, when detected by the agar disk-diffusion method

    Electrical storm: A clinical and electrophysiological overview

    Get PDF
    Electrical storm (ES) is a clinical condition characterized by three or more ventricular arrhythmia episodes leading to appropriate implantable cardioverterdefibrillator (ICD) therapies in a 24 h period. Mostly, arrhythmias responsible of ES are multiple morphologies of monomorphic ventricular tachycardia (VT), but polymorphic VT and ventricular fibrillation can also result in ES. Clinical presentation is very dramatic in most cases, strictly related to the cardiac disease that may worsen electrical and hemodynamic decompensation. Therefore ES management is challenging in the majority of cases and a high mortality is the rule both in the acute and in the long-term phases. Different underlying cardiomyopathies provide significant clues into the mechanism of ES, which can arise in the setting of structural arrhythmogenic cardiomyopathies or rarely in patients with inherited arrhythmic syndrome, impacting on pharmacological treatment, on ICD programming, and on the opportunity to apply strategies of catheter ablation. This latter has become a pivotal form of treatment due to its high efficacy in modifying the arrhythmogenic substrate and in achieving rhythm stability, aiming at reducing recurrences of ventricular arrhythmia and at improving overall survival. In this review, the most relevant epidemiological and clinical aspects of ES, with regard to the acute and long-term follow-up implications, were evaluated, focusing on these novel therapeutic strategies of treatment

    Design, optimization and experimental characterization of RF injectors for high brightness electron beams and plasma acceleration

    Full text link
    In this article, we share our experience related to the new photo-injector commissioning at the SPARC\_LAB test facility. The new photo-injector was installed into an existing machine and our goal was not only to improve the final beam parameters themselves but to improve the machine handling in day-to-day operations as well. Thus, besides the pure beam characterization, this article contains information about the improvements, that were introduced into the new photo-injector design from the machine maintenance point of view, and the benefits, that we gained by using the new technique to assemble the gun itself

    YwdL in Bacillus cereus: Its Role in Germination and Exosporium Structure

    Get PDF
    In members of the Bacillus cereus group the outermost layer of the spore is the exosporium, which interacts with hosts and the environment. Efforts have been made to identify proteins of the exosporium but only a few have so far been characterised and their role in determining spore architecture and spore function is still poorly understood. We have characterised the exosporium protein, YwdL. ΔywdL spores have a more fragile exosporium, subject to damage on repeated freeze-thawing, although there is no evidence of altered resistance properties, and coats appear intact. Immunogold labelling and Western blotting with anti-YwdL antibodies identified YwdL to be located exclusively on the inner surface of the exosporium of B. cereus and B. thuringiensis. We conclude that YwdL is important for formation of a robust exosporium but is not required to maintain the crystalline assembly within the basal layer or for attachment of the hairy nap structure. ΔywdL spores are unable to germinate in response to CaDPA, and have altered germination properties, a phenotype that confirms the expected defect in localization of the cortex lytic enzyme CwlJ in the coat
    • …
    corecore