74 research outputs found

    Solid Tumor-Targeted Infiltrating Cytotoxic T Lymphocytes Retained by a Superantigen Fusion Protein

    Get PDF
    Successful immune-mediated regression of solid tumors is difficult because of the small number of cytotoxic T lymphocytes (CTLs) that were traffic to the tumor site. Here, the targeting of tumor-specific infiltrating CTLs was dependent on a fusion protein consisting of human epidermal growth factor (EGF) and staphylococcal enterotoxin A (SEA) with the D227A mutation. EGF-SEA strongly restrained the growth of murine solid sarcoma 180 (S180) tumors (control versus EGF-SEA, mean tumor weight: 1.013 versus 0.197 g, difference  = 0.816 g). In mice treated with EGF-SEA, CD4+, CD8+ and SEA-reactive T lymphocytes were enriched around the EGFR expressing tumor cells. The EGF receptors were potentially phosphorylated by EGF-SEA stimulation and the fusion protein promoted T cells to release the tumoricidal cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α). Intratumoral CTLs secreted cytolytic pore-forming perforins and granzyme B proteins near the surface of carcinomas, causing the death of many tumor cells. We additionally show that labeled EGF-SEA was directly targeted to the tumor tissue after intravenous (i.v.) injection. The findings demonstrate that antibody-like EGF-SEA plays an important role in arresting CTLs in the solid tumor site and has therapeutic potential as a tumor-targeting agent

    A Common Missense Variant in the ATP Receptor P2X7 Is Associated with Reduced Risk of Cardiovascular Events

    Get PDF
    BACKGROUND AND PURPOSE: Extracellular adenosine triphosphate (ATP) regulates inflammatory cells by activation of the P2X(7) receptor. We hypothesized that polymorphisms in P2RX7 influence the risk of ischemic heart disease (IHD), ischemic stroke (IS) and cardiovascular risk factors and tested this hypothesis using genetic association studies. METHODS: Two loss-of-function SNPs in P2RX7 were genotyped in 1244 IHD cases and 2488 controls as well as 5969 individuals with cardiovascular risk factors. Eleven SNPs in a 250 kb region on chromosome 12 spanning P2RX7 as well as neighboring genes OASL, P2RX4 and CAMKK2 were genotyped in 4138 individuals with IS and 2528 controls. Association was examined using linear and logistic regression models with an additive genetic model. RESULTS: The common loss-of-function variant rs3751143 was significantly associated with a decreased risk of IHD in smokers (P = 0.03) as well as decreased risk of IS (OR 0.89; 95% CI = 0.81-0.97; P = 0.012). In addition, an intronic SNP in CAMKK2, rs2686342, were associated with a decreased risk of IS (OR 0.89; 95% CI = 0.82-0.97; P = 0.011). In subgroup analyses, both SNPs were associated with decreased risk of IS in individuals with hypertension (P = 0.045 and 0.015, respectively). CONCLUSIONS: A common loss-of-function missense variant in the gene encoding the P2X(7) receptor is associated with reduced risk of IS and with IHD in smokers. These findings might implicate a role of purinergic signaling in atherogenesis or atherothrombosis

    Discovery of Genetic Variation on Chromosome 5q22 Associated with Mortality in Heart Failure

    Get PDF
    Failure of the human heart to maintain sufficient output of blood for the demands of the body, heart failure, is a common condition with high mortality even with modern therapeutic alternatives. To identify molecular determinant

    Practical guidelines for rigor and reproducibility in preclinical and clinical studies on cardioprotection

    Get PDF
    The potential for ischemic preconditioning to reduce infarct size was first recognized more than 30 years ago. Despite extension of the concept to ischemic postconditioning and remote ischemic conditioning and literally thousands of experimental studies in various species and models which identified a multitude of signaling steps, so far there is only a single and very recent study, which has unequivocally translated cardioprotection to improved clinical outcome as the primary endpoint in patients. Many potential reasons for this disappointing lack of clinical translation of cardioprotection have been proposed, including lack of rigor and reproducibility in preclinical studies, and poor design and conduct of clinical trials. There is, however, universal agreement that robust preclinical data are a mandatory prerequisite to initiate a meaningful clinical trial. In this context, it is disconcerting that the CAESAR consortium (Consortium for preclinicAl assESsment of cARdioprotective therapies) in a highly standardized multi-center approach of preclinical studies identified only ischemic preconditioning, but not nitrite or sildenafil, when given as adjunct to reperfusion, to reduce infarct size. However, ischemic preconditioning—due to its very nature—can only be used in elective interventions, and not in acute myocardial infarction. Therefore, better strategies to identify robust and reproducible strategies of cardioprotection, which can subsequently be tested in clinical trials must be developed. We refer to the recent guidelines for experimental models of myocardial ischemia and infarction, and aim to provide now practical guidelines to ensure rigor and reproducibility in preclinical and clinical studies on cardioprotection. In line with the above guideline, we define rigor as standardized state-of-the-art design, conduct and reporting of a study, which is then a prerequisite for reproducibility, i.e. replication of results by another laboratory when performing exactly the same experiment

    Farnesyl pyrophosphate is an endogenous antagonist to ADP-stimulated P2Y12 receptor-mediated platelet aggregation.

    No full text
    Farnesyl pyrophosphate (FPP) is an intermediate in cholesterol biosynthesis, and it has also been reported to activate platelet LPA (lysophosphatidic acid) receptors. The aim of this study was to investigate the role of extracellular FPP in platelet aggregation. Human platelets were studied with light transmission aggregometry, flow cytometry and [35S]GTPγS binding assays. As shown previously, FPP could potentiate LPA-stimulated shape change. Surprisingly, FPP also acted as a selective insurmountable antagonist to ADP-induced platelet aggregation. FPP inhibited ADP-induced expression of P-selectin and the activated glycoprotein (Gp)IIb/IIIa receptor. FPP blocked ADP-induced inhibition of cAMP accumulation and [35S]GTPγS binding in platelets. In Chinese hamster ovary cells expressing the P2Y12 receptor, FPP caused a rightward shift of the [35S]GTPγS binding curve. In Sf9 insect cells expressing the human P2Y12 receptor, FPP showed a concentration-dependent, although incomplete inhibition of [3H]PSB-0413 binding. Docking of FPP in a P2Y12 receptor model revealed molecular similarities with ADP and a good fit into the binding pocket for ADP. In conclusion, FPP is an insurmountable antagonist of ADP-induced platelet aggregation mediated by the P2Y12 receptor. It could be an endogenous antithrombotic factor modulating the strong platelet aggregatory effects of ADP in a manner similar to the use of clopidogrel, prasugrel or ticagrelor in the treatment of ischaemic heart disease

    Developing a good practice guide on the evaluation of human response to vibration from railways in residential environments

    No full text
    The adverse effects that noise and vibration from railway systems in residential environments can have on people are key obstacles for the development of new rail systems and the operation of existing lines. Recent years have seen an increase in public sensitivity towards noise and vibration from rail systems and the success of legislation to control noise levels around railway lines has resulted in an increase in the number of complaints about railway-induced vibration. Costly mitigation measures coupled with unclear or non-existent assessment methods mean that there is a need in industry and consultancy for clear guidance on the assessment of groundborne vibration from rail systems with respect to human response. The current EU FP7 project CargoVibes is to publish a good practice guide on the assessment of the human response to railway induced vibration in residential environments. The aim of the guidance will be to provide end users with a set of practical tools to assess the human impact of "steady state" railway vibration primarily in terms of annoyance and sleep disturbance. Encompassing the current state of knowledge regarding the human response to vibration in residential environments alongside the practical outputs of the CargoVibes project, this document is intended to promote policy and standard development in this field. The current paper will present the preliminary contents of the guidance, which have been shaped by a workshop held at the University of Salford. This paper is intended to promote debate and enable contributions from the IWRN community to ensure that the guidance is relevant to the current needs of legislators, rail and infrastructure operators, consultants, and local authorities

    Supplementary Material for: Extracellular Uridine Triphosphate and Adenosine Triphosphate Attenuate Endothelial Inflammation through miR-22-Mediated ICAM-1 Inhibition

    No full text
    Adenosine and uridine triphosphate (ATP and UTP) can act as extracellular signalling molecules, playing important roles in vascular biology and disease. ATP and UTP acting via the P2Y<sub>2</sub>-receptor have, for example, been shown to regulate endothelial dilatation, inflammation and angiogenesis. MicroRNAs (miRNAs), a class of regulatory, short, non-coding RNAs, have been shown to be important regulators of these biological processes. In this study, we used RNA deep-sequencing to explore changes in miRNA expression in the human microvascular endothelial cell line HMEC-1 upon UTP treatment. The expression of miR-22, which we have previously shown to target ICAM-1 mRNA in HMEC-1, increased significantly after stimulation. Up-regulation of miR-22 and down-regulation of cell surface ICAM-1 were confirmed with qRT-PCR and flow cytometry, respectively. siRNA-mediated knockdown of the P2Y<sub>2</sub>-receptor abolished the effect of UTP on miR-22 transcription. Leukocyte adhesion was significantly inhibited in HMEC-1 following miR-22 overexpression and treatment with UTP/ATP. In conclusion, extracellular UTP and ATP can attenuate ICAM-1 expression and leukocyte adhesion in endothelial cells through miR-22
    corecore