1,635 research outputs found
Analysis of selection pressure exerted on Plasmopara viticola by organically based fungicides
Downy mildew is one of the most important grape diseases world-wide. The pathogen is a genetically highly diversified organism with a high capacity of adaptation. A monitoring of changes in population structure of P. viticola subjected to new copper replacing products or strategies, studied and developed within REPCO (Replacement of Copper Fungicides in Organic Production of Grapevine and Apple in Europe) is important for assessing selection pressure which could lead to a reduction of efficacy of these new measures. Therefore P. viticola lesions collected on untreated and treated vines were analyzed by means of microsatellite markers. No significant differences in the populations structure were determined among untreated and treated populations, indicating that the applied products didn’t exerted any selection pressure on the P. viticola populations
Appearance of a Host Protein in Cucumber Plants Infected with Viruses, Bacteria and Fungi
Electrophoretic analyses of extracts of cucumber leaves infected with Colleiotrichum lagenarium, Fusarium oxysporum f. sp. cucumerinum, Pseudomonas lachrymans, Erwinia tracheiphila, tobacco necrosis virus or cucumber mosaic virus revealed the presence of a protein band with an RF value of 0.55-0.60 (based on mobility of bromophenol blue) on 10% polyacrylamide gel. This band was not evident in extracts of healthy or mechanically wounded leaves. The protein was not detected in uninfected leaves of infected plants, but it was detected in similar amounts in infected leaves and in secondarily challenged leaves of infected plants even though symptoms were not apparent on the latter. The protein had a molecular weight of approximately 16 000 d, was adsorbed on DEAE-cellulose, did not react with Schiff's reagent, and did not have ribonuclease activity. When injected into cucumber leaves, it did not inhibit germination of conidia of C. lagenarium or induce resistance against disease caused by the fungu
Mapping quantitative physiological traits in apple ( Malus × domestica Borkh.)
Efficient breeding and selection of high-quality apple cultivars requires knowledge and understanding of the underlying genetics. The availability of genetic linkage maps constructed with molecular markers enables the detection and analysis of major genes and quantitative trait loci contributing to the quality traits of a genotype. A segregating population of the cross between the apple varieties 'sFiesta' (syn. 'sRed Pippin') and 'sDiscovery' has been observed over three years at three different sites in Switzerland and data on growth habit, blooming behaviour, juvenile period and fruit quality has been recorded. QTL analyses were performed, based on a genetic linkage map consisting of 804 molecular markers and covering all 17 apple chromosomes. With the maximum likelihood based interval mapping method, the investigated complex traits could be dissected into a number of QTLs affecting the observed characters. Genomic regions participating in the genetic control of stem diameter, plant height increment, leaf size, blooming time, blooming intensity, juvenile phase length, time of fruit maturity, number of fruit, fruit size and weight, fruit flesh firmness, sugar content and fruit acidity were identified and compared with previously mapped QTLs in apple. Although 'sDiscovery' fruit displayed a higher acid content, both acidity QTLs were attributed to the sweeter parent 'sFiesta'. This indicated homozygosity at the acidity loci in 'sDiscovery' preventing their detection in the progeny due to the lack of segregatio
Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii
Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype-phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6cM from CH05e03 and at 3.9cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrate
Inviting end-of-life talk in initial CALM therapy sessions: A conversation analytic study
OBJECTIVE: To examine how end-of-life talk is initiated in CALM therapy sessions with advanced cancer patients. METHODS: Conversation analysis was used to systematically examine the sequences where talk about death was raised in the first sessions of ten patients. RESULTS: Open questions about the patients' experiences, feelings or understanding in the context of talk about their troubles, were found to regularly elicit talk concerning end-of-life. These questions were designed in ways that invite patients to discuss troubling aspects of their cancer journey, without making discussion of this topic an interactional requirement. That is, the interactional work required to not engage in such talk is minimised. This choice is provided through the open question design, the degree to which negative feeling descriptors are specified, and the sequential context of the question. CONCLUSION: The analysis shows that therapists provide patients with the opportunity to talk about end-of-life in a way that is supportive of the therapeutic relationship. The readiness of patients to engage in end-of-life talk displays the salience of this topic, as well as the reflective space provided by CALM therapy. PRACTICE IMPLICATIONS: The results provide important insight into the process of CALM therapy, which can be used to guide training
Detection of the fire blight biocontrol agent Bacillus subtilis BD170 (Biopro®) in a Swiss apple orchard
Fire blight, caused by Erwinia amylovora, is a major disease threat to apple, pear and other pome fruit worldwide. The disease is widespread in Europe and has recently become established in Switzerland. Antibiotics are the most effective controls used in North America but these are not permitted for agricultural use in most European countries. A newly registered biological control product Biopro®, based on the antagonist Bacillus subtilis strain BD170, is being used as an alternative strategy for fire blight management. A specific molecular marker was developed for monitoring the spread of this agent on blossoms after Biopro® spray application in a Swiss apple orchard throughout the bloom period for 2years. Direct spraying resulted in efficient primary colonisation of pistils in flowers that were open at the time of treatment. Subsequent bacterial dissemination (secondary colonisation) of flowers that were closed or at bud stage at the time of treatment was observed but was found to be dependent on the timing of treatments relative to bloom stage in the orchard. Foraging honeybees were shown to be disseminators of Biopro®. We also report detection of the biocontrol agent in honey collected from hives where bees were exposed by placing Biopro® at the entrance or in the hatching nest and from hives that were simply placed in sprayed orchard
Vr 2: a new apple scab resistance gene
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an apple scab resistant selection thought to carry the resistance gene Vr. We report the identification by BSA of three AFLP markers and one RAPD marker associated with the GMAL 2473 resistance gene. SSRs associated with the resistance gene were found by (1) identifying the linkage group carrying the apple scab resistance and (2) testing the SSRs previously mapped in the same region. One such SSR, CH02c02a, mapped on linkage group 2, co-segregates with the resistance gene. GMAL 2473 was tested with molecular markers associated with other apple scab resistance genes, and accessions carrying known apple scab resistance genes were tested with the SSR linked to the resistance gene found in GMAL 2473. The results indicate that GMAL 2473 does not carry Vr, and that a new apple scab resistance gene, named Vr 2, has been identifie
Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slab
We study the polarization properties of light emitted by quantum dots that
are embedded in chiral photonic crystal structures made of achiral planar GaAs
waveguides. A modification of the electromagnetic mode structure due to the
chiral grating fabricated by partial etching of the wave\-guide layer has been
shown to result in a high circular polarization degree of the quantum
dot emission in the absence of external magnetic field. The physical nature of
the phenomenon can be understood in terms of the reciprocity principle taking
into account the structural symmetry. At the resonance wavelength, the
magnitude of is predicted to exceed 98%. The experimentally achieved
value of % is smaller, which is due to the contribution of
unpolarized light scattered by grating defects, thus breaking its periodicity.
The achieved polarization degree estimated removing the unpolarized nonresonant
background from the emission spectra can be estimated to be as high as 96%,
close to the theoretical prediction
Identification of serine/threonine kinase and nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes in the fire blight resistance quantitative trait locus of apple cultivar ‘Evereste’
Fire blight is the most destructive bacterial disease affecting apple (Malus×domestica) worldwide. So far, no resistance gene against fire blight has been characterized in apple, despite several resistance regions having been identified. A highly efficacious resistance quantitative trait locus (QTL) was localized on linkage group 12 (LG12) of the ornamental cultivar ‘Evereste’. A marker previously reported to be closely linked to this resistance was used to perform a chromosome landing. A bacterial artificial chromosome (BAC) clone of 189 kb carrying the fire blight resistance QTL was isolated and sequenced. New microsatellite markers were developed, and the genomic region containing the resistance locus was limited to 78 kb. A cluster of eight genes with homologies to already known resistance gene structures to bacterial diseases was identified and the corresponding gene transcription was verified. From this cluster, two genes were recognized in silico as the two most probable fire blight resistance genes showing homology with the Pto/Prf complex in tomato
Identification of functional apple scab resistance gene promoters
Apple scab (Venturia inaequalis) is one of the most damaging diseases affecting commercial apple production. Some wild Malus species possess resistance against apple scab. One gene, HcrVf2, from a cluster of three genes derived from the wild apple Malus floribunda clone 821, has recently been shown to confer resistance to apple scab when transferred into a scab-susceptible apple variety. For this proof-of-function experiment, the use of the 35S promoter from Cauliflower mosaic virus was reliable and appropriate. However, in order to reduce the amount of non-plant DNA in genetically modified apple to a minimum, with the aim of increasing genetically modified organism acceptability, these genes would ideally be regulated by their own promoters. In this study, sequences from the promoter region of the three members of the HcrVf gene family were compared. Promoter constructs containing progressive 5′ deletions were prepared and used for functional analyses. Qualitative assessment confirmed promoter activity in apple. Quantitative promoter comparison was carried out in tobacco (Nicotiana glutinosa) and led to the identification of several promoter regions with different strengths from a basal level to half the strength of the 35S promoter from Cauliflower mosaic viru
- …
