879 research outputs found

    Discovery of Water Vapor in the High-redshift Quasar APM 08279+5255 at z = 3.91

    Get PDF
    We report a detection of the excited 2_(20)-2_(11) rotational transition of para-H_2O in APM 08279+5255 using the IRAM Plateau de Bure Interferometer. At z = 3.91, this is the highest-redshift detection of interstellar water to date. From large velocity gradient modeling, we conclude that this transition is predominantly radiatively pumped and on its own does not provide a good estimate of the water abundance. However, additional water transitions are predicted to be detectable in this source, which would lead to an improved excitation model. We also present a sensitive upper limit for the hydrogen fluoride (HF) J = 1-0 absorption toward APM 08279+5255. While the face-on geometry of this source is not favorable for absorption studies, the lack of HF absorption is still puzzling and may be indicative of a lower fluorine abundance at z = 3.91 compared with the Galactic interstellar medium

    CH2D+, the Search for the Holy Grail

    Full text link
    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.Comment: 25 pages, 6 Figures Accepted in Journal of Physical Chemistry A. "Oka Festschrift: Celebrating 45 years of Astrochemistry

    Interstellar CH absorption in the diffuse interstellar medium along the sight-lines to G10.6–0.4 (W31C), W49N, and W51

    Get PDF
    We report the detection of the ground state N, J = 1, 3/2 → 1, 1/2 doublet of the methylidyne radical CH at ~532 GHz and ~536 GHz with the Herschel/HIFI instrument along the sight-line to the massive star-forming regions G10.6–0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO^+ in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO^+ deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H_2] ~3.2 ± 1.1 × 10^(−8). The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities n_H = n(H) + 2n(H_2) ranging between 100 and 1000 cm^(−3)

    Molecular Gas in Candidate Double-Barred Galaxies II. Cooler, Less Dense Gas Associated with Stronger Central Concentrations

    Full text link
    We have performed a multi-transition CO study of the centers of seven double-barred galaxies that exhibit a variety of molecular gas morphologies to determine if the molecular gas properties are correlated with the nuclear morphology and star forming activity. Near infrared galaxy surveys have revealed the existence of nuclear stellar bars in a large number of barred or lenticular galaxies. High resolution CO maps of these galaxies exhibit a wide range of morphologies. Recent simulations of double-barred galaxies suggest that variations in the gas properties may allow it to respond differently to similar gravitational potentials. We find that the 12CO J=3-2/J=2-1 line ratio is lower in galaxies with centrally concentrated gas distributions and higher in galaxies with CO emission dispersed around the galactic center in rings and peaks. The 13CO/12CO J=2-1 line ratios are similar for all galaxies, which indicates that the J=3-2/J=2-1 line ratio is tracing variations in gas temperature and density, rather than variations in optical depth. There is evidence that the galaxies which contain more centralized CO distributions are comprised of molecular gas that is cooler and less dense. Observations suggest that the star formation rates are higher in the galaxies containing the warmer, denser, less centrally concentrated gas. It is possible that either the bar dynamics are responsible for the variety of gas distributions and densities (and hence the star formation rates) or that the star formation alone is responsible for modifying the gas properties.Comment: 27 pages + 6 figures; to appear in the April 20, 2003 issue of Ap

    A Constant Bar Fraction out to Redshift z~1 in the Advanced Camera for Surveys Field of the Tadpole Galaxy

    Full text link
    Bar-like structures were investigated in a sample of 186 disk galaxies larger than 0.5 arcsec that are in the I-band image of the Tadpole galaxy taken with the HST ACS. We found 22 clear cases of barred galaxies, 21 galaxies with small bars that appear primarily as isophotal twists in a contour plot, and 11 cases of peculiar bars in clump-cluster galaxies, which are face-on versions of chain galaxies. The latter bars are probably young, as the galaxies contain only weak interclump emission. Four of the clearly barred galaxies at z~0.8-1.2 have grand design spirals. The bar fraction was determined as a function of galaxy inclination and compared with the analogous distribution in the local Universe. The bar fraction was also determined as a function of galaxy angular size. These distributions suggest that inclination and resolution effects obscure nearly half of the bars in our sample. The bar fraction was also determined as a function of redshift. We found a nearly constant bar fraction of 0.23+-0.03 from z~0 to z=1.1. When corrected for inclination and size effects, this fraction is comparable to the bar fraction in the local Universe, ~0.4, as tabulated for all bar and Hubble types in the Third Reference Catalogue of Galaxies. The average major axis of a barred galaxy in our sample is ~10 kpc after correcting for redshift with a LambdaCDM cosmology. Galaxy bars were present in normal abundance at least ~8 Gy ago (z~1); bar dissolution cannot be common during a Hubble time unless the bar formation rate is comparable to the dissolution rate.Comment: to appear in ApJ, Sept 1, 2004, Vol 612, 18 pg, 12 figure

    Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN and HNC isotopologues

    Full text link
    The 15N isotopologue abundance ratio measured today in different bodies of the solar system is thought to be connected to 15N-fractionation effects that would have occured in the protosolar nebula. The present study aims at putting constraints on the degree of 15N-fractionation that occurs during the prestellar phase, through observations of D, 13C and 15N-substituted isotopologues towards B1b. Both molecules from the nitrogen hydride family, i.e. N2H+ and NH3, and from the nitrile family, i.e. HCN, HNC and CN, are considered in the analysis. As a first step, we model the continuum emission in order to derive the physical structure of the cloud, i.e. gas temperature and H2 density. These parameters are subsequently used as an input in a non-local radiative transfer model to infer the radial abundances profiles of the various molecules. Our modeling shows that all the molecules are affected by depletion onto dust grains, in the region that encompasses the B1-bS and B1-bN cores. While high levels of deuterium fractionation are derived, we conclude that no fractionation occurs in the case of the nitrogen chemistry. Independently of the chemical family, the molecular abundances are consistent with 14N/15N~300, a value representative of the elemental atomic abundances of the parental gas. The inefficiency of the 15N-fractionation effects in the B1b region can be linked to the relatively high gas temperature ~17K which is representative of the innermost part of the cloud. Since this region shows signs of depletion onto dust grains, we can not exclude the possibility that the molecules were previously enriched in 15N, earlier in the B1b history, and that such an enrichment could have been incorporated into the ice mantles. It is thus necessary to repeat this kind of study in colder sources to test such a possibility.Comment: accepted in A&

    Herschel/HIFI Spectral Mapping of C+^+, CH+^+, and CH in Orion BN/KL: The Prevailing Role of Ultraviolet Irradiation in CH+^+ Formation

    Get PDF
    The CH+^+ ion is a key species in the initial steps of interstellar carbon chemistry. Its formation in diverse environments where it is observed is not well understood, however, because the main production pathway is so endothermic (4280 K) that it is unlikely to proceed at the typical temperatures of molecular clouds. We investigation CH+^+ formation with the first velocity-resolved spectral mapping of the CH+^+ J=10,21J=1-0, 2-1 rotational transitions, three sets of CH Λ\Lambda-doubled triplet lines, 12^{12}C+^+ and 13^{13}C+^+, and CH3_3OH 835~GHz E-symmetry Q branch transitions, obtained with Herschel/HIFI over \approx12 arcmin2^2 centered on the Orion BN/KL source. We present the spatial morphologies and kinematics, cloud boundary conditions, excitation temperatures, column densities, and 12^{12}C+^+ optical depths. Emission from C+^+, CH+^+, and CH is indicated to arise in the diluted gas, outside of the explosive, dense BN/KL outflow. Our models show that UV-irradiation provides favorable conditions for steady-state production of CH+^+ in this environment. Surprisingly, no spatial or kinematic correspondences of these species are found with H2_2 S(1) emission tracing shocked gas in the outflow. We propose that C+^+ is being consumed by rapid production of CO to explain the lack of C+^+ and CH+^+ in the outflow, and that fluorescence provides the reservoir of H2_2 excited to higher ro-vibrational and rotational levels. Hence, in star-forming environments containing sources of shocks and strong UV radiation, a description of CH+^+ formation and excitation conditions is incomplete without including the important --- possibly dominant --- role of UV irradiation.Comment: Accepted for publication in The Astrophysical Journa

    Detection of a dense clump in a filament interacting with W51e2

    Get PDF
    In the framework of the Herschel/PRISMAS Guaranteed Time Key Program, the line of sight to the distant ultracompact HII region W51e2 has been observed using several selected molecular species. Most of the detected absorption features are not associated with the background high-mass star-forming region and probe the diffuse matter along the line of sight. We present here the detection of an additional narrow absorption feature at ~70 km/s in the observed spectra of HDO, NH3 and C3. The 70 km/s feature is not uniquely identifiable with the dynamic components (the main cloud and the large-scale foreground filament) so-far identified toward this region. The narrow absorption feature is similar to the one found toward low-mass protostars, which is characteristic of the presence of a cold external envelope. The far-infrared spectroscopic data were combined with existing ground-based observations of 12CO, 13CO, CCH, CN, and C3H2 to characterize the 70 km/s component. Using a non-LTE analysis of multiple transitions of NH3 and CN, we estimated the density (n(H2) (1-5)x10^5 cm^-3) and temperature (10-30 K) for this narrow feature. We used a gas-grain warm-up based chemical model with physical parameters derived from the NH3 data to explain the observed abundances of the different chemical species. We propose that the 70 km/s narrow feature arises in a dense and cold clump that probably is undergoing collapse to form a low-mass protostar, formed on the trailing side of the high-velocity filament, which is thought to be interacting with the W51 main cloud. While the fortuitous coincidence of the dense clump along the line of sight with the continuum-bright W51e2 compact HII region has contributed to its non-detection in the continuum images, this same attribute makes it an appropriate source for absorption studies and in particular for ice studies of star-forming regions.Comment: Accepted for publication in A&
    corecore