99 research outputs found

    A Lightweight Multilevel Markup Language for Connecting Software Requirements and Simulations

    Get PDF
    [Context] Simulation is a powerful tool to validate specified requirements especially for complex systems that constantly monitor and react to characteristics of their environment. The simulators for such systems are complex themselves as they simulate multiple actors with multiple interacting functions in a number of different scenarios. To validate requirements in such simulations, the requirements must be related to the simulation runs. [Problem] In practice, engineers are reluctant to state their requirements in terms of structured languages or models that would allow for a straightforward relation of requirements to simulation runs. Instead, the requirements are expressed as unstructured natural language text that is hard to assess in a set of complex simulation runs. Therefore, the feedback loop between requirements and simulation is very long or non-existent at all. [Principal idea] We aim to close the gap between requirements specifications and simulation by proposing a lightweight markup language for requirements. Our markup language provides a set of annotations on different levels that can be applied to natural language requirements. The annotations are mapped to simulation events. As a result, meaningful information from a set of simulation runs is shown directly in the requirements specification. [Contribution] Instead of forcing the engineer to write requirements in a specific way just for the purpose of relating them to a simulator, the markup language allows annotating the already specified requirements up to a level that is interesting for the engineer. We evaluate our approach by analyzing 8 original requirements of an automotive system in a set of 100 simulation runs

    Velarium control and visual steering in box jellyfish

    Get PDF
    Directional swimming in the box jellyfish Tripedalia cystophora (cubozoa, cnidaria) is controlled by the shape of the velarium, which is a thin muscular sheet that forms the opening of the bell. It was unclear how different patterns of visual stimulation control directional swimming and that is the focus of this study. Jellyfish were tethered inside a small experimental tank, where the four vertical walls formed light panels. All four panels were lit at the start of an experiment. The shape of the opening in the velarium was recorded in response to switching off different combinations of panels. We found that under the experimental conditions the opening in the velarium assumed three distinct shapes during a swim contraction. The opening was (1) centred or it was off-centred and pocketed out either towards (2) a rhopalium or (3) a pedalium. The shape of the opening in the velarium followed the direction of the stimulus as long as the stimulus contained directional information. When the stimulus contained no directional information, the percentage of centred pulses increased and the shape of the off-centred pulses had a random orientation. Removing one rhopalium did not change the directional response of the animals, however, the number of centred pulses increased. When three rhopalia were removed, the percentage of centred pulses increased even further and the animals lost their ability to respond to directional information

    Anisotropic linear and non-linear excitonic optical properties of buckled monolayer semiconductors

    Full text link
    The optical properties of two-dimensional materials are exceptional in several respects. They are highly anisotropic and frequently dominated by excitonic effects. Dipole-allowed second order non-linear optical properties require broken inversion symmetry. Hence, several two-dimensional materials show strong in-plane (IP) non-linearity but negligible out-of-plane (OOP) response due to vertical symmetry. By considering buckled hexagonal monolayers, we analyze the critical role of broken vertical symmetry on their excitonic optical response. Both linear as well as second order shift current and second harmonic response are studied. We demonstrate that substantial OOP non-linear response can be obtained, in particular, through off-diagonal tensor elements coupling IP excitation to OOP response. Our findings are explained by excitonic selection rules for OOP response and the impact of dielectric screening on excitons is elucidated.Comment: 20 pages, 8 figure

    Contrast and rate of light intensity decrease control directional swimming in the box jellyfish Tripedalia cystophora (Cnidaria, Cubomedusae)

    Get PDF
    Box jellyfish respond to visual stimuli by changing the dynamics and frequency of bell contractions. In this study, we determined how the contrast and the dimming time of a simple visual stimulus affected bell contraction dynamics in the box jellyfish Tripedalia cystophora. Animals were tethered in an experimental chamber where the vertical walls formed the light stimuli. Two neighbouring walls were darkened and the contraction of the bell was monitored by high-speed video. We found that (1) bell contraction frequency increased with increasing contrast and decreasing dimming time. Furthermore, (2) when increasing the contrast and decreasing the dimming time pulses with an off-centred opening had a better defined direction and (3) the number of centred pulses decreased. Only weak effects were found on the relative diameter of the contracted bell and no correlation was found for the duration of bell contraction. Our observations show that visual stimuli modulate swim speed in T. cystophora by changing the swim pulse frequency. Furthermore, the direction of swimming is better defined when the animal perceives a high-contrast, or fast dimming, stimulus

    Mesorectal radiotherapy for early stage rectal cancer: A novel target volume

    Get PDF
    With the introduction of population-based bowel cancer screening, rectal cancer is diagnosed at earlier stages, yet standard treatment still requires the same extensive surgery that is used for more advanced stages. Organ preserving treatment is rapidly developing and is subject of investigation in numerous clinical trials. The STAR-TREC trial is an international, multi-centre randomised trial investigating organ preservation using (chemo)radiotherapy. Patients with small mrT1-3bN0V0M0 tumours are randomized between three arms: standard TME, organ preservation with SCRT or with CRT. In this trial, the clinical target volume has been tailored to the early staged disease of the included patients. This mesorectal irradiation volume includes the mesorectum and pre-sacral lymph nodes at the level of the tumour, two centimetres below and cranially up to the S2-3 interspace level. In contrast to conventional irradiation volumes, the lateral lymph nodes and the nodes along the superior rectal artery are excluded. As a result, the dose to the bowel, bladder, anal sphincter and the neurovascular plexus in the lower pelvis is substantially decreased, especially when combined with modern irradiation techniques, such as dynamic arc therapy. These lower doses are expected to lead to decreasing acute and late toxicity and beneficial functional outcomes. The implementation of this novel target volume will be accompanied by an extensive quality assurance program in the STAR-TREC trial. We describe the rationale behind the novel, mesorectal only radiotherapy treatment used in the STAR-TREC trial specifically tailored for early stage disease, with the goal of organ preservation

    Clar Sextet Analysis of Triangular, Rectangular and Honeycomb Graphene Antidot Lattices

    Full text link
    Pristine graphene is a semimetal and thus does not have a band gap. By making a nanometer scale periodic array of holes in the graphene sheet a band gap may form; the size of the gap is controllable by adjusting the parameters of the lattice. The hole diameter, hole geometry, lattice geometry and the separation of the holes are parameters that all play an important role in determining the size of the band gap, which, for technological applications, should be at least of the order of tenths of an eV. We investigate four different hole configurations: the rectangular, the triangular, the rotated triangular and the honeycomb lattice. It is found that the lattice geometry plays a crucial role for size of the band gap: the triangular arrangement displays always a sizable gap, while for the other types only particular hole separations lead to a large gap. This observation is explained using Clar sextet theory, and we find that a sufficient condition for a large gap is that the number of sextets exceeds one third of the total number of hexagons in the unit cell. Furthermore, we investigate non-isosceles triangular structures to probe the sensitivity of the gap in triangular lattices to small changes in geometry

    Plasmon-phonon coupling in large-area graphene dot and antidot arrays

    Full text link
    Nanostructured graphene on SiO2 substrates pave the way for enhanced light-matter interactions and explorations of strong plasmon-phonon hybridization in the mid-infrared regime. Unprecedented large-area graphene nanodot and antidot optical arrays are fabricated by nanosphere lithography, with structural control down to the sub-100 nanometer regime. The interaction between graphene plasmon modes and the substrate phonons is experimentally demonstrated and structural control is used to map out the hybridization of plasmons and phonons, showing coupling energies of the order 20 meV. Our findings are further supported by theoretical calculations and numerical simulations.Comment: 7 pages including 6 figures. Supporting information is available upon request to author

    Can we <i>S</i>ave the rectum by watchful waiting or <i>T</i>rans<i>A</i>nal microsurgery following (chemo) <i>R</i>adiotherapy versus total mesorectal excision for early <i>RE</i>ctal <i>C</i>ancer (STAR-TREC study)?::protocol for a multicentre, randomised feasibility study

    Get PDF
    Introduction Total mesorectal excision (TME) is the highly effective standard treatment for rectal cancer but is associated with significant morbidity and may be overtreatment for low-risk cancers. This study is designed to determine the feasibility of international recruitment in a study comparing organ-saving approaches versus standard TME surgery. Methods and analysis STAR-TREC trial is a multicentre international randomised, three-arm parallel, phase II feasibility study in patients with biopsy-proven adenocarcinoma of the rectum. The trial is coordinated from Birmingham, UK with national hubs in Radboudumc (the Netherlands) and Odense University Hospital Svendborg UMC (Denmark). Patients with rectal cancer, staged by CT and MRI as ≤cT3b (up to 5 mm of extramural spread) N0 M0 can be included. Patients will be randomised to either standard TME surgery (control), organ-saving treatment using long-course concurrent chemoradiation or organ-saving treatment using short-course radiotherapy. For patients treated with an organ-saving strategy, clinical response to (chemo)radiotherapy determines the next treatment step. An active surveillance regime will be performed in the case of a complete clinical regression. In the case of incomplete clinical regression, patients will proceed to local excision using an optimised platform such as transanal endoscopic microsurgery or other transanal techniques (eg, transanal endoscopic operation or transanal minimally invasive surgery). The primary endpoint of this phase II study is to demonstrate sufficient international recruitment in order to sustain a phase III study incorporating pelvic failure as the primary endpoint. Success in phase II is defined as randomisation of at least four cases per month internationally in year 1, rising to at least six cases per month internationally during year 2
    • …
    corecore