3,486 research outputs found

    Influence of cross-sectional geometry on mixing in a T-shaped micro-junction

    Get PDF
    Microfluidics is gaining increasing interest in the field of chemical engineering, as miniaturization may lead to a significant intensification of chemical processes. Since the flow is laminar, achieving a good mixing of reactants is one of the main challenges. The simplest geometry is constituted by a T-shaped mixer in which the two inlets join perpendicularly the mixing channel. The inlet cross section is usually square while the mixing channel cross-section is a rectangle as straight walls facilitate experimental and modelling analysis. The present work, on the contrary, is aimed at investigating through Computational Fluid Dynamics the effect of a cross-section with lateral inclined walls, to emulate a microfabrication technology based on laser machining. The presence of inclined walls is found to hamper mixing at high Reynolds numbers as the flow is unable to break the mirror symmetry and thus to undergo the engulfment regime. However, at low Reynold numbers the mixing is improved because the vortex regime presents a lower degree of symmetry with respect to that of T-mixers with straight walls

    First-principle study of excitonic self-trapping in diamond

    Full text link
    We present a first-principles study of excitonic self-trapping in diamond. Our calculation provides evidence for self-trapping of the 1s core exciton and gives a coherent interpretation of recent experimental X-ray absorption and emission data. Self-trapping does not occur in the case of a single valence exciton. We predict, however, that self-trapping should occur in the case of a valence biexciton. This process is accompanied by a large local relaxation of the lattice which could be observed experimentally.Comment: 12 pages, RevTex file, 3 Postscript figure

    A compact light readout system for longitudinally segmented shashlik calorimeters

    Get PDF
    The longitudinal segmentation of shashlik calorimeters is challenged by dead zones and non-uniformities introduced by the light collection and readout system. This limitation can be overcome by direct fiber-photosensor coupling, avoiding routing and bundling of the wavelength shifter fibers and embedding ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present the first experimental test of this readout scheme performed at the CERN PS-T9 beamline in 2015 with negative particles in the 1-5~GeV energy range. In this paper, we demonstrate that the scheme does not compromise the energy resolution and linearity compared with standard light collection and readout systems. In addition, we study the performance of the calorimeter for partially contained charged hadrons to assess the e/Ď€e/\pi separation capability and the response of the photosensors to direct ionization.Comment: To appear in Nuclear Instruments and Methods in Physics Research,

    Subcutaneous Adipose Tissue Transcriptome Highlights Specific Expression Profiles in Severe Pediatric Obesity: A Pilot Study

    Get PDF
    The prevalence of pediatric obesity is rising rapidly worldwide, and "omic" approaches are helpful in investigating the molecular pathophysiology of obesity. This work aims to identify transcriptional differences in the subcutaneous adipose tissue (scAT) of children with overweight (OW), obesity (OB), or severe obesity (SV) compared with those of normal weight (NW). Periumbilical scAT biopsies were collected from 20 male children aged 1-12 years. The children were stratified into the following four groups according to their BMI z-scores: SV, OB, OW, and NW. scAT RNA-Seq analyses were performed, and a differential expression analysis was conducted using the DESeq2 R package. A pathways analysis was performed to gain biological insights into gene expression. Our data highlight the significant deregulation in both coding and non-coding transcripts in the SV group when compared with the NW, OW, and OB groups. A KEGG pathway analysis showed that coding transcripts were mainly involved in lipid metabolism. A GSEA analysis revealed the upregulation of lipid degradation and metabolism in SV vs. OB and SV vs. OW. Bioenergetic processes and the catabolism of branched-chain amino acids were upregulated in SV compared with OB, OW, and NW. In conclusion, we report for the first time that a significant transcriptional deregulation occurs in the periumbilical scAT of children with severe obesity compared with those of normal weight or those with overweight or mild obesity

    IBIS/PICsIT in-flight performances

    Full text link
    PICsIT (Pixellated Imaging CaeSium Iodide Telescope) is the high energy detector of the IBIS telescope on-board the INTEGRAL satellite. PICsIT operates in the gamma-ray energy range between 175 keV and 10 MeV, with a typical energy resolution of 10% at 1 MeV, and an angular resolution of 12 arcmin within a \~100 square degree field of view, with the possibility to locate intense point sources in the MeV region at the few arcmin level. PICsIT is based upon a modular array of 4096 independent CsI(Tl) pixels, ~0.70 cm^2 in cross-section and 3 cm thick. In this work, the PICsIT on-board data handling and science operative modes are described. This work presents the in-flight performances in terms of background count spectra, sensitivity limit, and imaging capabilities.Comment: 8 pages, 4 figures. Accepted for publication on A&A, special issue on First Science with INTEGRA

    Risk of Post-Traumatic Stress Disorder in 111 survivors the 2009 Viareggio (Italy) Rail Crash: The role of mood spectrum comorbidity

    Get PDF
    Objectives: To explore the presence of PTSD and the potential correlations between the risk of developing PTSD and the lifetime mood spectrum signs and symptoms, as assessed with the Mood Spectrum Questionnaire Lifetime Version (MOODS-SR), in a sample of survivors of a liquid gas train crash in Italy, in 2009. Methods: One hundred eleven subjects were assessed with the Structured Clinical Interview for Axis I Disorder (SCID-I), the Mood Spectrum Questionnaire (MOODS-SR) Lifetime version, the Impact of Event Scale-Revised (IES-R), and the Trauma and Loss Spectrum Questionnaire (TALS-SR). Results: Sixty-six subjects, of the 111 who completed the SCID-I (59.5%), met criteria for PTSD. PTSD patients showed higher comorbidity rates for Generalized Anxiety Disorder (GAD) (p < 0.001), and lifetime and current Major Depressive Disorder (MDD) (p < 0.001) than subjects who did not develop PTSD. Lifetime MOODS-SR 'Sociability/Extraversion' factor and the prevalence of lifetime MDD differentiated subjects with from those without PTSD, when a multiple logistic regression analysis was performed. Conclusions: Although further research is needed, our results show a significant correlation between the risk of developing PTSD and the mood spectrum comorbidity

    A narrow band neutrino beam with high precision flux measurements

    Full text link
    The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generation of cross section experiments: a superior control of the flux and flavor composition at source and a high level of tunability and precision in the selection of the energy of the outcoming neutrinos. We report here the latest results in the development and test of the instrumentation for the decay tunnel. Special emphasis is given to irradiation tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5 pages, 2 figure

    The ENUBET Beamline

    Full text link
    The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam where lepton production can be monitored at single particle level in an instrumented decay tunnel. This would allow to measure νμ\nu_{\mu} and νe\nu_{e} cross sections with a precision improved by about one order of magnitude compared to present results. In this proceeding we describe a first realistic design of the hadron beamline based on a dipole coupled to a pair of quadrupole triplets along with the optimisation guidelines and the results of a simulation based on G4beamline. A static focusing design, though less efficient than a horn-based solution, results several times more efficient than originally expected. It works with slow proton extractions reducing drastically pile-up effects in the decay tunnel and it paves the way towards a time-tagged neutrino beam. On the other hand a horn-based transferline would ensure higher yields at the tunnel entrance. The first studies conducted at CERN to implement the synchronization between a few ms proton extraction and a horn pulse of 2-10 ms are also described.Comment: Poster presented at NuPhys2018 (London 19-21 December 2018). 4 pages, 3 figure
    • …
    corecore