11 research outputs found

    Biocompatible, hyperbranched nanocarriers for the transport and release of copper ions

    Get PDF
    Core–shell and core–multishell nanocarriers were designed to transport copper ions into cells. Herein, we present their synthesis and physicochemical characterization and demonstrate the high influence of their architectures on the loading and release of copper. Their low toxicity may open a new way to balance the Cu-homeostasis in neurodegenerative diseases

    An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core

    Get PDF
    Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

    Applications of lignin in the agri-food industry

    Get PDF
    Of late, valorization of agri-food industrial by-products and their sustainable utilization is gaining much contemplation world-over. Globally, 'Zero Waste Concept' is promoted with main emphasis laid towards generation of minimal wastes and maximal utilization of plantbased agri-food raw materials. One of the wastes/by-products in the agri-food industry are the lignin, which occurs as lignocellulosic biomass. This biomass is deliberated to be an environmental pollutant as they offer resistance to natural biodegradation. Safe disposal of this biomass is often considered a major challenge, especially in low-income countries. Hence, the application of modern technologies to effectively reduce these types of wastes and maximize their potential use/applications is vital in the present day scenario. Nevertheless, in some of the high-income countries, attempts have been made to efficiently utilize lignin as a source of fuel, as a raw material in the paper industry, as a filler material in biopolymer based packaging and for producing bioethanol. However, as of today, agri-food industrial applications remains significantly underexplored. Chemically, lignin is heterogeneous, bio-polymeric, polyphenolic compound, which is present naturally in plants, providing mechanical strength and rigidity. Reports are available wherein purified lignin is established to possess therapeutic values; and are rich in antioxidant, anti-microbial, anti-carcinogenic, antidiabetic properties, etc. This chapter is divided into four sub-categories focusing on various technological aspects related to isolation and characterization of lignin; established uses of lignin; proved bioactivities and therapeutic potentials of lignin, and finally on identifying the existing research gaps followed by future recommendations for potential use from agri-food industrial wastes.Theme of this chapter is based on our ongoing project- Valortech, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630

    Insights into household transmission of SARS-CoV-2 from a population-based serological survey

    Get PDF
    Understanding the risk of infection from household- and community-exposures and the transmissibility of asymptomatic infections is critical to SARS-CoV-2 control. Limited previous evidence is based primarily on virologic testing, which disproportionately misses mild and asymptomatic infections. Serologic measures are more likely to capture all previously infected individuals. We apply household transmission models to data from a cross-sectional, household-based population serosurvey of 4,534 people ≥5 years from 2,267 households enrolled April-June 2020 in Geneva, Switzerland. We found that the risk of infection from exposure to a single infected household member aged ≥5 years (17.3%,13.7-21.7) was more than three-times that of extra-household exposures over the first pandemic wave (5.1%,4.5-5.8). Young children had a lower risk of infection from household members. Working-age adults had the highest extra-household infection risk. Seropositive asymptomatic household members had 69.4% lower odds (95%CrI,31.8-88.8%) of infecting another household member compared to those reporting symptoms, accounting for 14.5% (95%CrI, 7.2-22.7%) of all household infections

    La population de Poitiers, des origines Ă  1954

    No full text
    Arnéodo-Frangville C. La population de Poitiers, des origines à 1954 . In: Norois, n°27, Juillet-Septembre 1960. pp. 273-315

    Fabrication of Environmentally Biodegradable Lignin Nanoparticles

    No full text
    We developed a method for the fabrication of novel biodegradable nanoparticles (NPs) from lignin which are apparently non-toxic for microalgae and yeast. We compare two alternative methods for the synthesis of lignin NPs which result in particles of very different stability upon change of pH. The first method is based on precipitation of low-sulfonated lignin from an ethylene glycol solution by using diluted acidic aqueous solutions, which yields lignin NPs that are stable over a wide range of pH. The second approach is based on the acidic precipitation of lignin from a high-pH aqueous solution which produces NPs stable only at low pH. Our study reveals that lignin NPs from the ethylene glycol-based precipitation contain densely packed lignin domains which explain the stability of the NPs even at high pH. We characterised the properties of the produced lignin NPs and determined their loading capacities with hydrophilic actives. The results suggest that these NPs are highly porous and consist of smaller lignin domains. Tests with microalgae like Chlamydomonas reinhardtii and yeast incubated in lignin NP dispersions indicated that these NPs lack measurable effect on the viability of these microorganisms. Such biodegradable and environmentally compatible NPs can find applications as drug delivery vehicles, stabilisers of cosmetic and pharmaceutical formulations, or in other areas where they may replace more expensive and potentially toxic nanomaterials
    corecore