813 research outputs found

    Classless Investing: Why Enforcing Class Action Waivers Is Both Proper, and Beneficial, for Investors

    Get PDF

    The role of nailfold videocapillaroscopy in Raynaud's phenomenon monitoring and early diagnosis of systemic sclerosis

    Get PDF
    Several connective tissue diseases, in particular systemic sclerosis (SSc), have Raynaud's phenomenon (RP) as their first clinical manifestation. Primary RP represents a benign condition often observed in otherwise healthy subjects, especially women: it is due to an exaggerated response to the physiological cold-induced vasospasm, whereas the secondary form of RP is typically associated with connective tissue diseases, especially SSc. Nailfold videocapillaroscopy (NVC), particulary after the recent technological advances, is a safe and reliable method to observe the microvascular structure and its early changes, especially during the transition from primary to secondary RP. In case of SSc, by considering validated patterns and scoring systems, NVC is the main tool that rheumatologists can rely on, besides the presence of specific auto-antibodies, to perform a very early diagnosis of the disease. This implies the possibility of early treatment of SSc, with an eye of predicting and preventing its major clinical complications

    MHC class I-related antigen-processing machinery component defects in feline mammary carcinoma.

    Get PDF
    Defects in HLA class I antigen-processing machinery (APM) component expression and/or function are frequent in human tumors. These defects may provide tumor cells with a mechanism to escape from recognition and destruction by HLA class I antigen-restricted, tumor antigen-specific cytotoxic T cells. However, expression and functional properties of MHC class I antigens and APM components in malignant cells in other animal species have been investigated to a limited extent. However, this information can contribute to our understanding of the mechanisms underlying the association of MHC class I antigen and APM component defects with malignant transformation of cells and to identify animal models to validate targeted therapies to correct these defects. To overcome this limitation in the present study, we have investigated the expression of the catalytic subunits of proteasome (Y, X, and Z) and of immunoproteasome (LMP2, LMP7, and LMP10) as well as of MHC class I heavy chain (HC) in 25 primary feline mammary carcinomas (FMCs) and in 23 matched healthy mammary tissues. We found a reduced expression of MHC class I HC and of LMP2 and LMP7 in tumors compared with normal tissues. Concordantly, proteasomal cleavage specificities in extracts from FMCs were different from those in healthy tissues. In addition, correlation analysis showed that LMP2 and LMP7 were concordantly expressed in FMCs, and their expression was significantly correlated with that of MHC class I HC. The abnormalities we have found in the APM in FMCs may cause a defective processing of some tumor antigens

    Cancer-Initiating Cells from Colorectal cancer Patients Escape from T Cell-Mediated Immunosurveillance In Vitro through Membrane-Bound IL-4

    Get PDF
    Cancer-initiating cells (CICs) that are responsible for tumor initiation, propagation, and resistance to standard therapies have been isolated from human solid tumors, including colorectal cancer (CRC). The aim of this study was to obtain an immunological profile of CRC-derived CICs and to identify CIC-associated target molecules for T cell immunotherapy. We have isolated cells with CIC properties along with their putative non-CIC autologous counterparts from human primary CRC tissues. These CICs have been shown to display “tumor-initiating/stemness” properties, including the expression of CIC-associated markers (e.g., CD44, CD24, ALDH-1, EpCAM, Lgr5), multipotency, and tumorigenicity following injection in immunodeficient mice. The immune profile of these cells was assessed by phenotype analysis and by in vitro stimulation of PBMCs with CICs as a source of Ags. CICs, compared with non-CIC counterparts, showed weak immunogenicity. This feature correlated with the expression of high levels of immu- nomodulatory molecules, such as IL-4, and with CIC-mediated inhibitory activity for anti-tumor T cell responses. CIC-associated IL-4 was found to be responsible for this negative function, which requires cell-to-cell contact with T lymphocytes and which is impaired by blocking IL-4 signaling. In addition, the CRC-associated Ag COA-1 was found to be expressed by CICs and to represent, in an autologous setting, a target molecule for anti-tumor T cells. Our study provides relevant information that may contribute to designing new immunotherapy protocols to target CICs in CRC patient

    Unraveling UBC 274: a morphological, kinematical and chemical analysis of a disrupting open cluster

    Get PDF
    We do a morphological, kinematic and chemical analysis of the disrupting cluster UBC 274 (2.5 Gyr, d=1778d=1778 pc) to study its global properties. We use HDBSCAN to obtain a new membership list up to 50 pc from its centre and up to magnitude G=19G=19 using Gaia EDR3 data. We use high resolution and high signal-to-noise spectra to obtain atmospheric parameters of 6 giants and subgiants, and individual abundances of 18 chemical species. The cluster has a highly eccentric (0.93) component, tilted \sim10 deg with respect to the plane of the Galaxy, which is morphologically compatible with the result of a test-particle simulation of a disrupting cluster. Our abundance analysis shows that the cluster has a subsolar metallicity of [Fe/H]=0.08±0.02=-0.08\pm0.02. Its chemical pattern is compatible with that of Ruprecht 147, of similar age but located closer to the Sun, with the remarkable exception of neutron-capture elements, which present an overabundance of [n/Fe]0.1[n\mathrm{/Fe]}\sim0.1. The cluster's elongated morphology is associated with the internal part of its tidal tail, following the expected dynamical process of disruption. We find a significant sign of mass segregation where the most massive stars appear 1.5 times more concentrated than other stars. The cluster's overabundance of neutron-capture elements can be related to the metallicity dependence of the neutron-capture yields due to the secondary nature of these elements, predicted by some models. UBC 274 presents a high chemical homogeneity at the level of 0.030.03 dex in the sampled region of its tidal tails.Comment: Accepted by A&

    IRX-2, a Novel Immunotherapeutic, Enhances Functions of Human Dendritic Cells

    Get PDF
    Background: In a recent phase II clinical trial for HNSCC patients, IRX-2, a cell-derived biologic, promoted T-cell infiltration into the tumor and prolonged overall survival. Mechanisms responsible for these IRX-2-mediated effects are unknown. We hypothesized that IRX-2 enhanced tumor antigen-(TA)-specific immunity by up-regulating functions of dendritic cells (DC). Methodology/Principal Findings: Monocyte-derived DC obtained from 18 HNSCC patients and 12 healthy donors were matured using IRX-2 or a mix of TNF-α, IL-1β and IL-6 ("conv. mix"). Multicolor flow cytometry was used to study the DC phenotype and antigen processing machinery (APM) component expression. ELISPOT and cytotoxicity assays were used to evaluate tumor-reactive cytotoxic T lymphocytes (CTL). IL-12p70 and IL-10 production by DC was measured by Luminex® and DC migration toward CCL21 was tested in transwell migration assays. IRX-2-matured DC functions were compared with those of conv. mix-matured DC. IRX-2-matured DC expressed higher levels (p<0.05) of CD11c, CD40, CCR7 as well as LMP2, TAP1, TAP2 and tapasin than conv. mix-matured DC. IRX-2-matured DC migrated significantly better towards CCL21, produced more IL-12p70 and had a higher IL12p70/IL-10 ratio than conv. mix-matured DC (p<0.05 for all). IRX-2-matured DC carried a higher density of tumor antigen-derived peptides, and CTL primed with these DC mediated higher cytotoxicity against tumor targets (p<0.05) compared to the conv. mix-matured DC. Conclusion: Excellent ability of IRX-2 to induce ex vivo DC maturation in HNSCC patients explains, in part, its clinical benefits and emphasizes its utility in ex vivo maturation of DC generated for therapy. © 2013 Schilling et al
    corecore