41 research outputs found

    Fluorine-induced improvement of structural and optical properties of CdTe thin films for solar cell efficiency enhancement

    Get PDF
    CdTe thin films of different thicknesses were electrodeposited and annealed in air after different chemical treatments to study the effects of thickness and the different chemical treatments on these films for photovoltaic applications. The thicknesses of the samples range from 1.1 μm to 2.1 μm and the annealing process was carried out after prior CdCl2 treatment and CdCl2+CdF2 treatment as well as without any chemical treatment. Detailed optical and structural characterisation of the as-deposited and annealed CdTe thin films using UV-Vis spectrophotometry and x-ray diffraction reveal that incorporating fluorine in the well-known CdCl2 treatment of CdTe produces remarkable improvement in the optical and structural properties of the materials. This CdCl2+CdF2 treatment produced solar cell with efficiency of 8.3% compared to CdCl2 treatment, with efficiency of 3.3%. The results reveal an alternative method of post-deposition chemical treatment of CdTe which can lead to the production of CdTe-based solar cells with enhanced photovoltaic conversion efficiencies compared to the use of only CdCl2. Keywords: CdTe; CdCl2

    Effect of iodine incorporation on characteristic properties of cadmium telluride deposited in aqueous solution

    Get PDF
    The electrodeposition of polycrystalline I-doped CdTe was successfully performed from aqueous solutions containing cadmium nitrate (Cd(NO3)2 and tellurium oxide (TeO2). The effects of different I-doping concentrations in the electrolytic bath on the deposited CdTe layers deposited were evaluated structurally, optically, morphologically and electronically using X-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current (DC) conductivity test respectively. The XRD show reduction in the (111) cubic CdTe peak intensity and the calculated crystallite size of the CdTe:I layers above 5 ppm I-doping. At I-doping of 1000 ppm of the CdTe-bath and above, the deposition of only crystalline Te due to the formation of Cd-I complexes debarring the deposition of Cd and co-deposition of CdTe in aqueous solution was observed. Morphologically, reductions in grain size were observed above 5 ppm I-doping with high pinhole density and the formation of cracks within the CdTe:I layers. For the as-deposited CdTe:I layers, conduction type remained n-type across all the explored I-doping concentration of 200 ppm. For the CdCl2 and Ga2(SO4)2+CdCl2 treated CdTe:I layers, the transition from n- to p-type conductivity was observed for the CdTe:I baths doped with 20 ppm and above due to the reduced cadmium deposition on the substrate. The highest conductivity was observed at 5 ppm I-doping of the CdTe-bath. Observations made on the CdTe:I in aqueous solution differs from the non-aqueous solvent documented in the literature. These results are reported systematically in this communication

    Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3

    Get PDF
    The various phases of tin sulfide have been studied as semiconductors since the 1960s and are now being investigated as potential earth-abundant photovoltaic and photocatalytic materials. Of particular note is the recent isolation of zincblende SnS in particles and thin-films. Herein, first-principles calculations are employed to better understand this novel geometry and its place within the tin sulfide multiphasic system. We report the enthalpies of formation for the known phases of SnS, SnS2, and Sn2S3, with good agreement between theory and experiment for the ground-state structures of each. While theoretical X-ray diffraction patterns do agree with the assignment of the zincblende phase demonstrated in the literature, the structure is not stable close to the lattice parameters observed experimentally, exhibiting an unfeasibly large pressure and a formation enthalpy much higher than any other phase. Ab initio molecular dynamics simulations reveal spontaneous degradation to an amorphous phase much lower in energy, as Sn(II) is inherently unstable in a regular tetrahedral environment. We conclude that the known rocksalt phase of SnS has been mis-assigned as zincblende in the recent literature

    Process Development for High Voc CdTe Solar Cells

    No full text
    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project

    Advanced Processing Technology for High-efficiency, Thin-film CuInSe{sub 2} and CdTe Solar Cells. Final Subcontract Report, March 1, 1992--April 30, 1995

    No full text
    This report describes work performed by the University of South Florida to develop a manufacturing-friendly fabrication process for CuInSe{sub 2} (CIS) solar cells. The process developed under this project uses conventional deposition processes and equipment, does not require stringent process control, and uses elemental Se as the selenium source. The authors believe it can be readily scaled up using off-the-shelf processing equipment and that it will meet the low manufacturing-cost objectives. Another significant achievement under this project was the development of a reactive sputtering deposition technology for ZnO. ZnO is used in many solar cell devices, and sputtering is a desirable manufacturing technology. The application of sputtering has been limited because conventional deposition uses ceramic targets that result in low sputtering rates. The use of Zn metal as the target in reactive sputtering overcomes this limitation. The authors have demonstrated that ZnO deposited by reactive sputtering has state-of-the-art opto-electronic properties. These developments result in large-area uniformity and optimized performance and provide a significant opportunity for applying and commercializing the technology. The second objective of this project was to fabricate high-efficiency CdTe solar cells using manufacturing-friendly processes. Three deposition processes were used to deposit CdS films: chemical bath deposition, rf sputtering,more
    corecore