1,567 research outputs found

    Energy-Momentum Complex in M\o ller's Tetrad Theory of Gravitation

    Full text link
    M\o ller's Tetrad Theory of Gravitation is examined with regard to the energy-momentum complex. The energy-momentum complex as well as the superpotential associated with M\o ller's theory are derived. M\o ller's field equations are solved in the case of spherical symmetry. Two different solutions, giving rise to the same metric, are obtained. The energy associated with one solution is found to be twice the energy associated with the other. Some suggestions to get out of this inconsistency are discussed at the end of the paper.Comment: LaTeX2e with AMS-LaTeX 1.2, 13 page

    Cardiac evaluation of candidates for kidney transplantation: value of exercise radionuclide angiocardiography

    Get PDF
    In view of the high incidence and mortality of coronary artery disease (CAD) in patients with kidney transplantation, a systematic cardiac evaluation was prospectively performed in 103 uraemic patients eligible for transplantation. After clinical examination, 28 patients with symptoms of CAD or diabetes mellitus were referred directly for coronary angiography, whereas the remaining 75 patients had rest and exercise radionuclide angiocardiography for evaluation of possible asymptomatic CAD. Among them, left ventricular ejection fraction was below 40% at rest or fell during exercise by at least 5 EF% in 12 patients; coronary angiography in nine showed CAD in four and hypertensive heart disease in five. In the remaining 63 (of 75) patients without severe resting left ventricular dysfunction or exercise ischaemia, the follow-up of 28 ±7 months revealed no clinical manifestation of CAD. Overall incidence of CAD in symptomatic and asymptomatic patients during a follow-up of 27 months after cardiac evaluation was 20 and 25% in non-diabetic and diabetic candidates for kidney transplantation, respectively (P = n.s.). Thus, clinical examination combined with exercise radionuclide angiocardiography in patients without signs or symptoms of heart disease had a high predictive accuracy for presence or absence of late manifestations of CAD. Exercise radionuclide angiocardiography is therefore a useful method for screening kidney transplantation candidates for asymptomatic CA

    Sex chromosome positions in human interphase nuclei as studied by in situ hybridization with chromosome specific DNA probes

    Get PDF
    Two cloned repetitive DNA probes, pXBR and CY1, which bind preferentially to specific regions of the human X and Y chromosome, respectively, were used to study the distribution of the sex chromosomes in human lymphocyte nuclei by in situ hybridization experiments. Our data indicate a large variability of the distances between the sex chromosomes in male and female interphase nuclei. However, the mean distance observed between the X and Y chromosome was significantly smaller than the mean distance observed between the two X-chromosomes. The distribution of distances determined experimentally is compared with three model distributions of distances, and the question of a non-random distribution of sex chromosomes is discussed. Mathematical details of these model distributions are provided in an Appendix to this paper. In the case of a human translocation chromosome (XqterXp22.2::Yq11Y qter) contained in the Chinese hamster x human hybrid cell line 445 x 393, the binding sites of pXBR and CY1 were found close to each other in most interphase nuclei. These data demonstrate the potential use of chromosome-specific repetitive DNA probes to study the problem of interphase chromosome topography

    New Fermions at e+^+e^- Colliders: I. Production and Decay

    Full text link
    We analyze the production in e+ee^+e^- collisions of new heavy fermions stemming from extensions of the Standard Model. We write down the most general expression for the production of two heavy fermions and their subsequent decays, allowing for the polarization of the e+^+e^- initial state and taking into account the final polarization of the fermions. We then discuss the various decay modes including cascade and three body decays, and the production mechanisms, both pair production and single production in association with ordinary fermions.Comment: 21 pages (no figures), Preprint UdeM-LPN-TH-93-15

    Ferromagnetic Kondo-Lattice Model

    Full text link
    We present a many-body approach to the electronic and magnetic properties of the (multiband) Kondo-lattice model with ferromagnetic interband exchange. The coupling between itinerant conduction electrons and localized magnetic moments leads, on the one hand, to a distinct temperature-dependence of the electronic quasiparticle spectrum and, on the other hand, to magnetic properties, as e.~g.the Curie temperature T_C or the magnon dispersion, which are strongly influenced by the band electron selfenergy and therewith in particular by the carrier density. We present results for the single-band Kondo-lattice model in terms of quasiparticle densities of states and quasiparticle band structures and demonstrate the density-dependence of the self-consistently derived Curie temperature. The transition from weak-coupling (RKKY) to strong-coupling (double exchange) behaviour is worked out. The multiband model is combined with a tight-binding-LMTO bandstructure calculation to describe real magnetic materials. As an example we present results for the archetypal ferromagnetic local-moment systems EuO and EuS. The proposed method avoids the double counting of relevant interactions and takes into account the correct symmetry of atomic orbitals.Comment: 15 pages, 10 figure

    Finite-size behaviour of the microcanonical specific heat

    Full text link
    For models which exhibit a continuous phase transition in the thermodynamic limit a numerical study of small systems reveals a non-monotonic behaviour of the microcanonical specific heat as a function of the system size. This is in contrast to a treatment in the canonical ensemble where the maximum of the specific heat increases monotonically with the size of the system. A phenomenological theory is developed which permits to describe this peculiar behaviour of the microcanonical specific heat and allows in principle the determination of microcanonical critical exponents.Comment: 15 pages, 7 figures, submitted to J. Phys.

    Independent responses to ultraviolet radiation and herbivore attack in broccoli

    Get PDF
    The plant responses to ultraviolet-B radiation (UV-B) and to insect herbivory are believed to be partially similar. In this study, responses to these factors were investigated in the crop species broccoli (Brassica oleracea L. convar. botrytis, Brassicaceae). Plants were first grown under three UV-B regimes (80%, 23%, and 4% transmittance of ambient UV-B) in greenhouses covered with either innovative materials (high and medium transmittance) or conventional glass (low transmittance). Half of the plants then remained under these conditions, but the other half were transferred to the field with ambient light and herbivore access for up to 3 d. The plant responses to distinct environmental conditions were examined by analysing the morphological and chemical parameters of plants kept inside and plants exposed in the field. Furthermore, suitability of field-exposed plants to naturally occurring insects was investigated in relation to UV-B pretreatment. High levels of UV-B radiation led to increased flavonoid concentrations, but to a lower biomass accumulation in broccoli. These patterns remained after outdoor exposure. However, UV-induced changes of plant traits did not alter attractiveness to herbivorous insects: thrips, whiteflies, and aphids attacked plants independently of UV-B pretreatment. A 3-fold increase of indolyl glucosinolate concentrations occurred in above-ground tissue of all the plants, most likely due to massive herbivore attack after 3 d of field exposure. The results show that plants respond with high specificity to different abiotic and biotic impacts, demonstrating the separate perception and processing of stress factors

    Review of the k-Body Embedded Ensembles of Gaussian Random Matrices

    Full text link
    The embedded ensembles were introduced by Mon and French as physically more plausible stochastic models of many--body systems governed by one--and two--body interactions than provided by standard random--matrix theory. We review several approaches aimed at determining the spectral density, the spectral fluctuation properties, and the ergodic properties of these ensembles: moments methods, numerical simulations, the replica trick, the eigenvector decomposition of the matrix of second moments and supersymmetry, the binary correlation approximation, and the study of correlations between matrix elements.Comment: Final version. 29 pages, 4 ps figures, uses iopart.st

    LigASite—a database of biologically relevant binding sites in proteins with known apo-structures

    Get PDF
    Better characterization of binding sites in proteins and the ability to accurately predict their location and energetic properties are major challenges which, if addressed, would have many valuable practical applications. Unfortunately, reliable benchmark datasets of binding sites in proteins are still sorely lacking. Here, we present LigASite (‘LIGand Attachment SITE’), a gold-standard dataset of binding sites in 550 proteins of known structures. LigASite consists exclusively of biologically relevant binding sites in proteins for which at least one apo- and one holo-structure are available. In defining the binding sites for each protein, information from all holo-structures is combined, considering in each case the quaternary structure defined by the PQS server. LigASite is built using simple criteria and is automatically updated as new structures become available in the PDB, thereby guaranteeing optimal data coverage over time. Both a redundant and a culled non-redundant version of the dataset is available at http://www.scmbb.ulb.ac.be/Users/benoit/LigASite. The website interface allows users to search the dataset by PDB identifiers, ligand identifiers, protein names or sequence, and to look for structural matches as defined by the CATH homologous superfamilies. The datasets can be downloaded from the website as Schema-validated XML files or comma-separated flat files

    Quark-hadron-duality in the charmonium and upsilon system

    Get PDF
    In this work we discuss the practical and conceptual issues related to quark-hadron-duality in heavy-heavy systems. Recent measurements in the charmonium region allow a direct test of quark-hadron-duality. We present a formula for non-resonant background production in e^+ e^- \to D{\bar D} and extract the resonance parameters of the \psi(3S)-\psi(6S). The obtained results are used to investigate the upsilon energy range.Comment: 21 pages, 3 figures, references adde
    corecore