679 research outputs found

    A Giant Planet Undergoing Extreme-Ultraviolet Irradiation By Its Hot Massive-Star Host

    Get PDF
    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300–10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside2, and is highly inflated–traits that have been linked to high insolation3,4. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star (ref. 6)

    KELT-12b: A P ~ 5 day, Highly Inflated Hot Jupiter Transiting A Mildly Evolved Hot Star

    Get PDF
    We announce the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting the mildly evolved, V = 10.64 host star TYC 2619-1057-1. We followed up the initial transit signal in the KELT-North survey data with precise ground-based photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the host star has = 6279 ± 51 K, = 3.89 ± 0.05,[Fe/H] = , = , and = 2.37 ± 0.17 . The planetary companion has = 0.95 ± 0.14 , = , = , and density = g cm −3 , making it one of the most inflated giant planets known. Furthermore, for future follow-up, we report a high-precision time of inferior conjunction in of 2,457,083.660459 ± 0.000894 and period of days. Despite the relatively large separation of ∼0.07 au implied by its ∼5.03-day orbital period, KELT-12b receives significant flux of erg s −1 cm −2 from its host. We compare the radii and insolations of transiting gas giant planets around hot ( K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite to search for inflated gas giants in longer-period orbits

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Search for the standard model Higgs boson at LEP

    Get PDF

    World radiocommunication conference 12 : implications for the spectrum eco-system

    Get PDF
    Spectrum allocation is once more a key issue facing the global telecommunications industry. Largely overlooked in current debates, however, is the World Radiocommunication Conference (WRC). Decisions taken by WRC shape the future roadmap of the telecommunications industry, not least because it has the ability to shape the global spectrum allocation framework. In the debates of WRC-12 it is possible to identify three main issues: enhancement of the international spectrum regulatory framework, regulatory measures required to introduce Cognitive Radio Systems (CRS) technologies; and, additional spectrum allocation to mobile service. WRC-12 eventually decided not to change the current international radio regulations with regard to the first two issues and agreed to the third issue. The main implications of WRC-12 on the spectrum ecosystem are that most of actors are not in support of the concept of spectrum flexibility associated with trading and that the concept of spectrum open access is not under consideration. This is explained by the observation that spectrum trading and spectrum commons weaken state control over spectrum and challenge the main principles and norms of the international spectrum management regime. In addition, the mobile allocation issue has shown the lack of conformity with the main rules of the regime: regional spectrum allocation in the International Telecommunication Union (ITU) three regions, and the resistance to the slow decision making procedures. In conclusion, while the rules and decision-making procedures of the international spectrum management regime were challenged in the WRC-12, the main principles and norms are still accepted by the majority of countries

    Inclusive V0V^0 Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions

    Full text link
    Inclusive differential cross sections dσpA/dxFd\sigma_{pA}/dx_F and dσpA/dpt2d\sigma_{pA}/dp_t^2 for the production of \kzeros, \lambdazero, and \antilambda particles are measured at HERA in proton-induced reactions on C, Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to s=41.6\sqrt {s} = 41.6 GeV in the proton-nucleon system. The ratios of differential cross sections \rklpa and \rllpa are measured to be 6.2±0.56.2\pm 0.5 and 0.66±0.070.66\pm 0.07, respectively, for \xf 0.06\approx-0.06. No significant dependence upon the target material is observed. Within errors, the slopes of the transverse momentum distributions dσpA/dpt2d\sigma_{pA}/dp_t^2 also show no significant dependence upon the target material. The dependence of the extrapolated total cross sections σpA\sigma_{pA} on the atomic mass AA of the target material is discussed, and the deduced cross sections per nucleon σpN\sigma_{pN} are compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table

    KELT-16b: A Highly Irradiated, Ultra-short Period Hot Jupiter Nearing Tidal Disruption

    Get PDF
    We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (V = 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with Teff=6236±54{T}_{\mathrm{eff}}=6236\pm 54 K, logg=4.2530.036+0.031\mathrm{log}{g}_{\star }={4.253}_{-0.036}^{+0.031}, [Fe/H]=0.0020.085+0.086[\mathrm{Fe}/{\rm{H}}]=-{0.002}_{-0.085}^{+0.086}, M=1.2110.046+0.043M{M}_{\star }={1.211}_{-0.046}^{+0.043}\,{M}_{\odot }, and R=1.3600.053+0.064R{R}_{\star }\,={1.360}_{-0.053}^{+0.064}{R}_{\odot }. The planet is a relatively high-mass inflated gas giant with MP=2.750.15+0.16MJ{M}_{{\rm{P}}}={2.75}_{-0.15}^{+0.16}{M}_{{\rm{J}}}, RP=1.4150.067+0.084RJ{R}_{{\rm{P}}}={1.415}_{-0.067}^{+0.084}{R}_{{\rm{J}}}, density ρP=1.20±0.18{\rho }_{{\rm{P}}}=1.20\pm 0.18 g cm−3, surface gravity loggP=3.5300.049+0.042\mathrm{log}\,{g}_{{\rm{P}}}={3.530}_{-0.049}^{+0.042}, and Teq=245347+55{T}_{\mathrm{eq}}={2453}_{-47}^{+55} K. The best-fitting linear ephemeris is TC=2457247.24791±0.00019{T}_{{\rm{C}}}=2457247.24791\pm 0.00019 BJDTDB {\mathrm{BJD}}_{\mathrm{TDB}}\ and P=0.9689951±0.0000024P=0.9689951\pm 0.0000024 day. KELT-16b joins WASP-18b, −19b, −43b, −103b, and HATS-18b as the only giant transiting planets with P \u3c 1 day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by the Hubble Space Telescope, Spitzer, and eventually the James Webb Space Telescope. For example, as a hotter, higher-mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature–pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass–metallicity relation of the solar system gas giants to higher masses. KELT-16b currently orbits at a mere ~1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few ×105 years (for a stellar tidal quality factor of Q=105{Q}_{* }^{\prime }={10}^{5}). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai–Lidov (KL) oscillations played a role in driving KELT-16b inward to its current precarious orbit
    corecore