187 research outputs found

    Eliminating Fruit and Vegetable Planting Restrictions: How Would Markets Be Affected?

    Get PDF
    Eighty-nine percent of American households were food secure throughout the entire year in 2005, meaning that they had access, at all times, to enough food for an active, healthy life for all household members. The remaining households were food insecure at least some time during that year. The prevalence of food insecurity declined from 11.9 percent of households in 2004 to 11.0 percent in 2005, while the prevalence of very low food security remained unchanged at 3.9 percent. This report, based on data from the December 2005 food security survey, provides the most recent statistics on the food security of U.S. households, as well as on how much they spent for food and the extent to which food-insecure households participated in Federal and community food assistance programs. Survey responses indicate that the typical food-secure household in the U.S. spent 34 percent more on food than the typical food-insecure household of the same size and household composition. Just over one-half of all food-insecure households participated in one or more of the three largest Federal food assistance programs during the month prior to the survey. About 22 percent of food-insecure households—3.5 percent of all U.S. households—obtained emergency food from a food pantry at some time during the year.Food security, food insecurity, food spending, food pantry, hunger, soup kitchen, emergency kitchen, material well-being, Food Stamp Program, National School, Crop Production/Industries,

    Comprehensive Solid-State Characterization of Rare Earth Flouride Nanoparticles

    Get PDF
    The combination of multinuclear solid-state NMR spectroscopy and powder X-ray diffraction has been applied to characterize the octahedron-shaped crystalline nanoparticle products resulting from an inverse micelle synthesis. Rietveld refinements of the powder X-ray diffraction data from the nanoparticles revealed their general formula to be (H3O)Y3F10·xH2O. 1H magic-angle spinning (MAS) NMR experiments provided information on sample purity and served as an excellent probe of the zeolithic incorporation of atmospheric water. 19F MAS NMR experiments on a series of monodisperse nanoparticle samples of various sizes yielded spectra featuring three unique 19F resonances arising from three different fluorine sites within the (H3O)Y3F10·xH2O crystal structure. Partial removal of zeolithic water from the internal cavities and tunnels of the nanoparticles led to changes in the integrated peak intensities in the 19F MAS NMR spectra; the origin of this behavior is discussed in terms of 19F longitudinal relaxation. 19F–89Y variable-amplitude cross-polarization (VACP) NMR experiments on both stationary samples and samples under MAS conditions indicated that two distinct yttrium environments are present, and on the basis of the relative peak intensities, the population of one of the two sites is closely linked to the nanoparticle size. Both 19F MAS and 19F–89Y VACP/MAS experiments indicated small amounts of an impurity present in certain nanoparticles; these are postulated to be spherical amorphous YF3 nanoparticles. We discuss the importance of probing molecular-level structure in addition to microscopic structure and how the combination of these characterization methods is crucial for understanding nanoparticle design, synthesis, and application

    Unravelling the Structure of Magnus' Pink Salt

    Get PDF
    A combination of multinuclear ultra-wideline solid-state NMR, powder X-ray diffraction (pXRD), X-ray absorption fine structure experiments, and first principles calculations of platinum magnetic shielding tensors has been employed to reveal the previously unknown crystal structure of Magnus’ pink salt (MPS), [Pt(NH3)4][PtCl4], study the isomeric Magnus’ green salt (MGS), [Pt(NH3)4][PtCl4], and examine their synthetic precursors K2PtCl4 and Pt(NH3)4Cl2·H2O. A simple synthesis of MPS is detailed which produces relatively pure product in good yield. Broad 195Pt, 14N, and 35Cl SSNMR powder patterns have been acquired using the WURST-CPMG and BRAIN-CP/WURST-CPMG pulse sequences. Experimentally measured and theoretically calculated platinum magnetic shielding tensors are shown to be very sensitive to the types and arrangements of coordinating ligands as well as intermolecular Pt–Pt metallophilic interactions. High-resolution 195Pt NMR spectra of select regions of the broad 195Pt powder patterns, in conjunction with an array of 14N and 35Cl spectra, reveal clear structural differences between all compounds. Rietveld refinements of synchrotron pXRD patterns, guided by first principles geometry optimization calculations, yield the space group, unit cell parameters, and atomic positions of MPS. The crystal structure has P-1 symmetry and resides in a pseudotetragonal unit cell with a distance of >5.5 Å between Pt sites in the square-planar Pt units. The long Pt–Pt distances and nonparallel orientation of Pt square planes prohibit metallophilic interactions within MPS. The combination of ultra-wideline NMR, pXRD, and computational methods offers much promise for future investigation and characterization of Pt-containing systems

    2,3,7,8-Tetrachlorodibenzo-p-dioxin plasma levels in Seveso 20 years after the accident.

    Get PDF
    In 1976, near Seveso, Italy, an industrial accident caused the release of large quantities of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) into the atmosphere, resulting in the highest levels of the toxicant ever recorded in humans. The contaminated area was divided into three zones (A, B, R) corresponding to decreasing TCDD levels in soil, and cohort including all residents was enumerated. The population of the surrounding noncontaminated area (non-ABR) was chosen as referent population. Two decades after the accident. plasma TCDD levels were measured in 62 subjects randomly sampled from the highest exposed zones (A and B) and 59 subjects from non-ABR, frequency matched for age, gender, and cigarette smoking status. Subjects living in the exposed areas have persistently elevated plasma TCDD levels (range = 1.2-89.9 ppt; geometric mean = 53.2 and 11.0 ppt for Zone A and Zone B, respectively). Levels significantly decrease by distance from the accident site (p = 0.0001), down to general population values (4.9 ppt) in non-ABR, thus validating the original zone classification based on environmental measurements. Women have higher TCDD levels than men in the entire study area (p = 0.0003 in Zone B; p = 0.007 in non-ABR). This gender difference persists after adjustment for location within the zone, consumption of meat derived from locally raised animals, age, body mass index, and smoking. There is no evidence for a gender difference in exposure, so variation in metabolism or elimination due to body fat or hormone-related factors may explain this finding. Elevated TCDD levels in women may contribute to adverse reproductive, developmental, and cancer outcomes

    Gene conversion in human rearranged immunoglobulin genes

    Get PDF
    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion
    • …
    corecore