11 research outputs found

    Using quantum entangled photons to measure the absolute photon detection efficiency of a multi-pixel SiPM array

    No full text
    Spontaneous parametric down-conversion (SPDC)of a visible pump photon is the generation of two less energetic, quantum entangled photons (QEPs), often in the near infrared (NIR), using a non-linear crystal e.g. beta barium borate. Since the detection of one QEP predicates the existence of its entangled twin, QEPs have previously been used to measure the absolute photon detection efficiency (PDE), η(λ), of a detector under test by measuring time-coincident events with an additional trigger detector, allowing evaluation of η DUT (λ)without recourse to a calibrated reference detector. In this paper, the QEP absolute PDE measurement technique is outlined, and an extension of this technique is proposed to measure η(λ)for pixels on a multi-pixel array where each pixel provides an individual signal output. By treating all pixels in a multi-pixel array as indistinguishable, Monte Carlo simulations show that the symmetry of the measurement allows η(λ)to be determined for each pixel. A route towards experimental measurements using this technique with a 64-pixel SiPM array combined with a 64-channel waveform digitiser module is outlined

    Front-end electronics of the Compact High Energy Camera

    No full text
    The Compact High Energy Camera is a focal plane camera designed for two mirror Schwarzschild–Couder design imaging air Cherenkov telescopes such as the SST-2M variants on the Cherenkov Telescope Array. It utilises a 2048-pixel array of silicon photomultipliers arranged in thirty-two 8 x 8 pixel tiles. Each detector tile is instrumented with a front-end electronics module designed to provide single photon counting with sub-nanosecond timing, full-waveform digitisation and event triggering capabilities based around TARGET ASICs. Performance results including triggering, digitiser noise, signal crosstalk, linearity and dynamic range from initial laboratory tests have been collated and are presented

    Evidence that short-period AM CVn systems are diverse in outburst behaviour

    Get PDF
    We present results of our analysis of up to 15 yr of photometric data from eight AM CVn systems with orbital periods between 22.5 and 26.8 min. Our data have been collected from the GOTO, ZTF, Pan-STARRS, ASAS-SN, and Catalina all-sky surveys and amateur observations collated by the AAVSO. We find evidence that these interacting ultracompact binaries show a similar diversity of long-term optical properties as the hydrogen accreting dwarf novae. We found that AM CVn systems in the previously identified accretion disc instability region are not a homogenous group. Various members of the analysed sample exhibit behaviour reminiscent of Z Cam systems with long superoutbursts (SOs) and standstills, SU UMa systems with regular, shorter SOs, and nova-like systems that appear only in a high state. The addition of TESS full frame images of one of these systems, KL Dra, reveals the first evidence for normal outbursts appearing as a precursor to SOs in an AM CVn system. Our results will inform theoretical modelling of the outbursts of hydrogen deficient systems

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    Full text link
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    The return of the spin period in DW Cnc and evidence of new high state outbursts

    No full text
    DW Cnc is an intermediate polar which has previously been observed in both high and low states. Observations of the high state of DW Cnc have previously revealed a spin period at ∼38.6 min, however, observations from the 2018 to 2019 low state showed no evidence of the spin period. We present results from our analysis of 12 s cadence photometric data collected by Next Generation Transit Survey of DW Cnc during the high state which began in 2019. Following the previously reported suppression of the spin period signal, we identify the return of this signal during the high state, consistent with previous observations of it. We identify this as the restarting of accretion during the high state. We further identified three short outbursts lasting ∼1 d in DW Cnc with a mean recurrence time of ∼60 d and an amplitude of ∼1 mag. These are the first outbursts identified in DW Cnc since 2008. Due to the short nature of these events, we identify them not as a result of accretion instabilities but instead either from instabilities originating from the interaction of the magnetorotational instability in the accretion disc and the magnetic field generated by the white dwarf or the result of magnetic gating

    Processing GOTO survey data with the Rubin Observatory LSST Science Pipelines II: Forced Photometry and lightcurves

    No full text
    We have adapted the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Science Pipelines to process data from the Gravitational-wave Optical Transient Observer (GOTO) prototype. In this paper, we describe how we used the LSST Science Pipelines to conduct forced photometry measurements on nightly GOTO data. By comparing the photometry measurements of sources taken on multiple nights, we find that the precision of our photometry is typically better than 20 mmag for sources brighter than 16 mag. We also compare our photometry measurements against colour-corrected Panoramic Survey Telescope and Rapid Response System photometry and find that the two agree to within 10 mmag (1 ) for bright (i.e., ) sources to 200 mmag for faint (i.e., ) sources. Additionally, we compare our results to those obtained by GOTO’s own in-house pipeline, gotophoto, and obtain similar results. Based on repeatability measurements, we measure a L-band survey depth of between 19 and 20 magnitudes, depending on observing conditions. We assess, using repeated observations of non-varying standard Sloan Digital Sky Survey stars, the accuracy of our uncertainties, which we find are typically overestimated by roughly a factor of two for bright sources (i.e., ), but slightly underestimated (by roughly a factor of 1.25) for fainter sources ( ). Finally, we present lightcurves for a selection of variable sources and compare them to those obtained with the Zwicky Transient Factory and GAIA. Despite the LSST Software Pipelines still undergoing active development, our results show that they are already delivering robust forced photometry measurements from GOTO data

    The Gravitational-wave Optical Transient Observer (GOTO): Prototype performance and prospects for transient science

    Get PDF
    The Gravitational-wave Optical Transient Observer (GOTO) is an array of wide-field optical telescopes, designed to exploit new discoveries from the next generation of gravitational wave detectors (LIGO, Virgo, and KAGRA), study rapidly evolving transients, and exploit multimessenger opportunities arising from neutrino and very high energy gamma-ray triggers. In addition to a rapid response mode, the array will also perform a sensitive, all-sky transient survey with few day cadence. The facility features a novel, modular design with multiple 40-cm wide-field reflectors on a single mount. In 2017 June, the GOTO collaboration deployed the initial project prototype, with 4 telescope units, at the Roque de los Muchachos Observatory (ORM), La Palma, Canary Islands. Here, we describe the deployment, commissioning, and performance of the prototype hardware, and discuss the impact of these findings on the final GOTO design. We also offer an initial assessment of the science prospects for the full GOTO facility that employs 32 telescope units across two sites

    Machine learning for transient recognition in difference imaging with minimum sampling effort

    Get PDF
    The amount of observational data produced by time-domain astronomy is exponentially increasing. Human inspection alone is not an effective way to identify genuine transients from the data. An automatic real-bogus classifier is needed and machine learning techniques are commonly used to achieve this goal. Building a training set with a sufficiently large number of verified transients is challenging, due to the requirement of human verification. We present an approach for creating a training set by using all detections in the science images to be the sample of real detections and all detections in the difference images, which are generated by the process of difference imaging to detect transients, to be the samples of bogus detections. This strategy effectively minimizes the labour involved in the data labelling for supervised machine learning methods. We demonstrate the utility of the training set by using it to train several classifiers utilizing as the feature representation the normalized pixel values in 21 × 21 pixel stamps centred at the detection position, observed with the Gravitational-wave Optical Transient Observer (GOTO) prototype. The real-bogus classifier trained with this strategy can provide up to 95 per cent prediction accuracy on the real detections at a false alarm rate of 1 per cent⁠

    Transient-optimized real-bogus classification with Bayesian convolutional neural networks - sifting the GOTO candidate stream

    Get PDF
    Large-scale sky surveys have played a transformative role in our understanding of astrophysical transients, only made possible by increasingly powerful machine learning-based filtering to accurately sift through the vast quantities of incoming data generated. In this paper, we present a new real-bogus classifier based on a Bayesian convolutional neural network that provides nuanced, uncertainty-aware classification of transient candidates in difference imaging, and demonstrate its application to the datastream from the GOTO wide-field optical survey. Not only are candidates assigned a well-calibrated probability of being real, but also an associated confidence that can be used to prioritize human vetting efforts and inform future model optimization via active learning. To fully realize the potential of this architecture, we present a fully automated training set generation method which requires no human labelling, incorporating a novel data-driven augmentation method to significantly improve the recovery of faint and nuclear transient sources. We achieve competitive classification accuracy (FPR and FNR both below 1 per cent) compared against classifiers trained with fully human-labelled data sets, while being significantly quicker and less labour-intensive to build. This data-driven approach is uniquely scalable to the upcoming challenges and data needs of next-generation transient surveys. We make our data generation and model training codes available to the community

    TeV Emission of Galactic Plane Sources with HAWC and H.E.S.S.

    Full text link
    The High Altitude Water Cherenkov (HAWC) observatory and the High Energy Stereoscopic System (H.E.S.S.) are two leading instruments in the ground-based very-high-energy γ-ray domain. HAWC employs the water Cherenkov detection (WCD) technique, while H.E.S.S. is an array of Imaging Atmospheric Cherenkov Telescopes (IACTs). The two facilities therefore differ in multiple aspects, including their observation strategy, the size of their field of view, and their angular resolution, leading to different analysis approaches. Until now, it has been unclear if the results of observations by both types of instruments are consistent: several of the recently discovered HAWC sources have been followed up by IACTs, resulting in a confirmed detection only in a minority of cases. With this paper, we go further and try to resolve the tensions between previous results by performing a new analysis of the H.E.S.S. Galactic plane survey data, applying an analysis technique comparable between H.E.S.S. and HAWC. Events above 1 TeV are selected for both data sets, the point-spread function of H.E.S.S. is broadened to approach that of HAWC, and a similar background estimation method is used. This is the first detailed comparison of the Galactic plane observed by both instruments. H.E.S.S. can confirm the γ-ray emission of four HAWC sources among seven previously undetected by IACTs, while the three others have measured fluxes below the sensitivity of the H.E.S.S. data set. Remaining differences in the overall γ-ray flux can be explained by the systematic uncertainties. Therefore, we confirm a consistent view of the γ-ray sky between WCD and IACT techniques
    corecore