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ABSTRACT
The amount of observational data produced by time-domain astronomy is exponentially increasing. Human inspection alone
is not an effective way to identify genuine transients from the data. An automatic real-bogus classifier is needed and machine
learning techniques are commonly used to achieve this goal. Building a training set with a sufficiently large number of verified
transients is challenging, due to the requirement of human verification. We present an approach for creating a training set by
using all detections in the science images to be the sample of real detections and all detections in the difference images, which
are generated by the process of difference imaging to detect transients, to be the samples of bogus detections. This strategy
effectively minimizes the labour involved in the data labelling for supervised machine learning methods. We demonstrate the
utility of the training set by using it to train several classifiers utilizing as the feature representation the normalized pixel values
in 21 × 21 pixel stamps centred at the detection position, observed with the Gravitational-wave Optical Transient Observer
(GOTO) prototype. The real-bogus classifier trained with this strategy can provide up to 95 per cent prediction accuracy on the
real detections at a false alarm rate of 1 per cent.

Key words: methods: data analysis – methods: statistical – techniques: image processing.

1 IN T RO D U C T I O N

Transient astronomy focuses on astrophysical objects that vary on
timescales of hours to years, and can originate from events such
as supernovae, accreting binaries, stellar flares, tidal disruption
events, and gamma-ray bursts (GRBs). Identifying and characterizing
transients is important for understanding astrophysics under extreme
environments, accretion physics, and the underlying physics of stellar
flares.

In 2015, transient science stepped into a new era with the first
direct detection of a gravitational wave (GW) event, GW150914

� E-mail: yik.mong@monash.edu

(Abbott et al. 2016), caused by the merger of a pair of ≈30-M�
black holes. Two years later, the first binary neutron star merger,
GW170817, was detected (Abbott et al. 2017). GW detection alone
can typically localize the event to only within a few hundred square
degrees. To improve the localization down to order of an arcsecond,
rapid-response electromagnetic follow-up observations are required
(e.g. Coulter et al. 2017). The identification of electromagnetic coun-
terparts to the GW events is key to understanding the environments
of the post-merger remnants (Metzger 2017).

All-sky optical surveys can provide a more complete investigation
of the optical transient sky. Time-domain astronomy has become a
fast-growing area of astrophysics requiring comprehensive rapid-
responsive strategies for following up the triggers of interesting
events, such as GRBs and GW events.
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The recent advances of transient astronomy have been well
established by many transient survey projects, such as the SDSS-
II Supernova Survey (Frieman et al. 2008), the Catalina Real Time
Transient Survey (CRTS; Drake et al. 2009), Pan-STARRS1 (PS1;
Kaiser et al. 2010), the Zwicky Transient Facility (ZTF; Masci et al.
2018), the Asteroid Terrestrial-impact Last Alert System (ATLAS;
Tonry et al. 2018), and the SkyMapper Transient Survey (Wolf
et al. 2018), among others. In the future, of order 106 transients
are expected to be discovered per night with the Vera C. Rubin
Observatory (Ivezić et al. 2019).

The Gravitational-wave Optical Transient Observer1 (GOTO) is
a robotic ground-based optical telescope located at the Roque de
los Muchachos Observatory on La Palma, Canary Islands (Steeghs
et al., in preparation). It is dedicated to searching for the optical
counterparts to GW events. The GOTO prototype currently consists
of 4 × 40 cm unit telescopes (UTs) covering ≈ 18 deg2 per exposure.
The angular resolution of GOTO is about 1.24 arcsec pixel−1. There
are four Baader filters on each UT, a broad-band L filter (400–
700 nm), and narrower B, G, and R filters. Under dark conditions,
the detection limit in the L band is ≈ 20.5 mag in three stacked 60-s
exposures. GOTO also performs an all-sky survey in order to discover
other types of optical transients. The nightly sky coverage of GOTO
is up to ≈ 2000 deg2.

To detect transients in an all-sky survey, difference imaging and
‘real-bogus’ classification are the key steps. Difference imaging
is the process under which a recently observed ‘science’ image is
subtracted from an earlier ‘reference’ image for identifying excess
flux (see Section 2.2 for more details). However, as the difference
images include both subtraction residuals and transient detections,
real-bogus classification is required to separate them.

Due to a large number of detections (typically �104) per GOTO
image, source vetting and identification cannot rely solely on manual
inspection. Efficient ‘real-bogus’ classification on difference images
has become one of the most important problems in transient astron-
omy, and several techniques have already been developed based on
both supervised and unsupervised machine learning to address the
problem.

There are two traditional ways to extract feature representations
using supervised machine learning. Isophotal measurements of the
detections (hereafter referred to as ‘level-0’ attributes) could be used
as the model features (Bloom et al. 2012; Brink et al. 2013; Gieseke
et al. 2017). Additionally, both linear and non-linear combinations
of level-0 attributes could generate more useful, but complicated
features (hereafter referred to as ‘level-1’ attributes). However, there
are a vast number of ways to combine level-0 attributes, and trial
and error tests have to be carried out in order to verify which level-
1 attributes are useful. This ‘feature engineering’ step becomes the
most challenging part of the method. On the other hand, Wright et al.
(2015) and Gieseke et al. (2017), hereafter referred to as W15 and
G1, respectively, use pixel intensities as the feature representatives,
which do not require any feature engineering.

Previous studies have shown that the learning algorithm and size of
the training data set are the key factors affecting the performance of
the classifier. W15 used a sample size of 32 095 (80 per cent training
data, and 20 per cent test data). Brink et al. (2013), on the other hand,
trained their classifiers on 50 000 detections and tested the classifiers
on a validation set with a size of 28 448. The random forest (RF)
technique is a machine learning algorithm with the architecture of
multiple decision trees. It performed best in terms of the FOM for

1https://goto-observatory.org/.

both W15 and G17 studies, i.e. using either isophotal measurements
or normalized pixel values as the classification features. The FOM
is defined as the minimum missed detection rate (MDR) with an
acceptance of 1 per cent false positive rate (FPR). A convolutional
neural network (CNN) is another machine learning algorithm that
is now widely used for image recognition in many different fields.
Unlike RF, CNN only adopts pixel values to be the learning features.
Some authors (e.g. Cabrera-Vives et al. 2016, 2017; Gieseke et al.
2017) have claimed that CNN shows the best performance at picking
out real candidates in difference images.

The most challenging part of applying supervised machine learn-
ing is in building up a sufficiently sized training data set in an
automated way. Relying on human classification alone to create the
training set is prohibitively expensive. Real transients in the data set
could be defined as known transients identified by archival catalog
searches or with prompt spectroscopy. Wright et al. (2015) built up
a data set of ≈ 8000 real transients based on 3 yr of Pan-STARRS1
observations, while Brink et al. (2013) used PTF observations taken
in 2010 to build their training data set, where they identified 14 781
real transients on difference images based on spectroscopy and other
public domain data to create their real sample.

In this paper, we describe how we build a real-bogus classifier
with minimum sampling effort. We begin with the motivation of
this work followed by a brief description of the image processing
in Section 2. We describe the construction of our data sets and
the feature extraction in Sections 3 and 4. The models we use are
described in Section 5. In Section 6, we compare the performance
of our ‘quick-build’ classifier (QB-classifier) with the one trained on
an injection set (IT-classifier). Finally, we summarize our work in
Section 7.

2 MOTI VATI ON AND I MAG E PRO CESSI NG

2.1 Motivation

The most straightforward approach to building a sample of real
transients in the training set is to manually separate these from the few
thousand bogus detections in each difference image (see Section 2.2
for more details on difference imaging). Using information from
other transient surveys with spectroscopic classification, we can
ensure that our sample of real transients is pure. However, there are
two main problems with this approach. First, each of the samples in
the data set has to be classified manually, which is a labour-intensive
exercise. Secondly, it takes a long time to build a large data set, and
the exercise is not easily scalable to even larger data sets.

To solve these problems, we have to understand how real detections
appear on difference images. Unlike real detections, bogus artifacts
typically do not appear as point sources in the difference images.
Consequently, one can reasonably assume that genuine transients
in the difference images should have similar properties to the point
sources in the science images, since both detections can be described
by a PSF superimposed on top of background noise. We can therefore
create our training data set by collecting the training sample from
the detections on the science images rather than from the difference
images. This method of assembling a training data set does not
require any human inspection allowing us to easily build up a very
large sample.

There are several potential contaminants in the resulting sample:
extended objects, such as galaxies, and artefacts, including cosmic
rays, and hot pixels. The contaminant fraction can be reduced by
filtering the outliers from the normalized full width at half-maximum
(FWHM) distribution, and by using the SExtractor parameters
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Table 1. Number of detections in different data sets.

Data sets Bogus Real Total

Quick-build training set 400 000 400 000 800 000
Injection data set 141 782 141 782 283 564
MP test set 42 929 33 511 76 440

CLASS STAR and ISO AREA IMAGE to exclude the galaxies and
hot pixels from the real sample (see Section 3.1 for more details on
SExtractor).

In parallel to the approach we used to build our real sample, we
build our bogus sample by collecting all detections on the difference
images. Since we label all detections on the difference images as
bogus, there may be some genuine transients included in the bogus
sample. The contamination fraction in the bogus sample is estimated
to be less than 1 per cent by assuming no more than 20 transients on
each field.

With a large training data set, the machine learning model is less
likely to be overfitted. Therefore, the decision boundary should be
smooth enough to reject the outliers, which are the contaminants
in our training set. As a result, we can maintain this negligible
contamination in both real and bogus samples.

The key aim of this work is to demonstrate that our method
of creating the training set is not only effective, but also easily
applicable to different machine learning algorithms to solve the
real-bogus classification problem. We have therefore implemented
different algorithms into the classifier to verify the feasibility of our
approach.

2.2 Image processing

Raw images taken with GOTO are reduced automatically with our
standard pipeline before performing further analysis (Ackley et al.,
in preparation). The standard pipeline applies bias correction, dark-
frame subtraction, and flat-field correction, followed by co-adding
3 × 60 s individual exposures to form a median science image.
Throughout this study, we performed all analyses using median
images as these have a higher signal-to-noise ratio than individual
exposures.

Thetemplate image, also referred to as the reference image, is a
previous image of the same field that is subtracted from all successive
science frames. Since GOTO operates by tiling the sky on a fixed
grid (Dyer et al. 2018), we are able to update the set of templates
regularly.

Image alignment and difference imaging are part of the standard
pipeline procedures following calibration. We use a modified version
of the PYTHON package alipy to align the template image to
the science image by cross-matching positions of selected field
stars using high-order affine transformations independent of the
WCS information. Once the alignment has been performed, we use
hotpants2 (Becker 2015) to perform image subtraction.

3 DATA SETS

We use three data sets in this work: the quick-build training set, the
injection data set for both testing and training, and the minor planet
(MP) test set (Table 1).

2https://github.com/acbecker/hotpants.

The quick-build training set is used to train our real-bogus
classifier. We apply our quick-build strategy which can effectively
assemble real detections in our training set. In practice, we are
primarily concerned about the performance of the classifiers applied
on the difference images. Since all the real samples in this training
set are collected from the science images, this data set will not be
used for any testing purpose. Therefore, as we need a reliable test
set for testing the performance of our classifiers, we are motivated to
build the injection data set and MP test set.

The injection data set is generated by collating all of the detections
from the difference images after performing difference imaging on
the injected science images. We apply this data set in two ways. The
first is to use the injection set to test the classifiers trained on the
quick-build training set. On the other hand, since the morphology
of the injections are a good representative of how genuine transients
may appear in practice, we also use the injections recovered on the
difference images to train our classifier. This, in effect, mimics the
training process using genuine transients in the standard way and
will indirectly provide a figure of merit (FoM) comparison with the
classifiers trained using the quick-build method.

We consider the MP test set to be the most reliable test set, over
the injection test set, as we use verifiable MPs as our real sources.
The classifiers trained on the quick-build and the injection data sets
will be tested on this MP test set for performance evaluation and to
provide evidence of the efficacy of our method.

3.1 ‘Quick-build’ training set

To ensure that the quality of the images used to build our data set is
sufficiently high enough, we select images based on several criteria.
We randomly select 45 science images between 2019 April and May
from different fields taken with different UTs for building our real
sample. We avoid choosing images where the number of detections
are <15 000 within the FoV (= 2.1 × 2.8 deg2) of a single UT to
ensure a large enough representation of samples.
SExtractor is commonly used to identify detections, which

have a higher pixel counts as compared to the background level, in
an image (Bertin & Arnouts 1996). The default sensitivity parameter
of the SExtractor, DETECT THRESH, is set to 2.0σ for science
images and 2.5σ for difference images on GOTO standard pipeline.

In order to avoid bad detections in our real sample, such as those
on the edge of the frame, saturated or spurious pixels, etc., we filter
out the detections with non-zero FLAGS.3 This step will remove
saturated bright objects (FLAG=4), and any objects that are too
close to bright objects (FLAG=2). For those objects next to bright
objects that are well deblended (FLAG=0), they are also included
in our training set since they should still resemble a PSF on top
of the background. We identify that flagged detections contribute
≈10 per cent of the entire real sample. We further reduce the
contaminants by filtering the detections falling outside the range
between 0.3 and 99.7 per cent percentiles of the normalized FWHM
distribution over each image, as well as detections brighter than m
= 12 were also removed in order to reduce the contamination due
to bright objects with diffraction spikes. Finally, we build our real
sample of 455 673 objects purely using the detections extracted from
the science images.

Similarly, we use 680 775 detections extracted from 49 difference
images to build our bogus sample. There is a small fraction of true
negative contaminants in the bogus sample due to the presence of

3https://sextractor.readthedocs.io/en/latest/Flagging.html.
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real transients in the difference image. In most cases, ≈103–104

detections are recovered by SExtractor in a single difference
image. Among them, there are typically fewer than 20 real transients
per image, i.e. typically < 1 per cent. For those frames aligning on
the galactic plane, there could be a higher number of recovered
variable sources. However, the bogus artefacts that arise due to image
subtractions residuals or template misalignments greatly outnumber
the number of variable sources or true transients, and generally scale
with the density of sources in the field. Therefore, the contamination
fraction still remains less than 1 per cent. Building our bogus sample
using all of the detections on the difference image (less than 1 per cent
contamination) without human inspection is acceptable if the sample
size is large enough. Combining with the real sample, our entire data
set contains 1 136 448 detections.

To ensure our training set is balanced, we randomly select 400 000
detections from each of the real and bogus samples, to form our
training set for a total size of 800 000 detections.

3.2 Injection data set

We create another data set by using images with simulated sources
injected into them. We use this data set both for testing the
performance of the classifiers trained on the quick-build training
set (see Section 3.1), and to train another classifier for comparison
purposes.

We use the field of SN2019pjv located at α = 17:14:34.8, δ =
+28:07:26.1 (J2000), which has been revisited by GOTO 91 times
on different nights between 2019 September and 2020 February,
as our injection field. Since UT3 and UT4 were relatively stable,
in terms of the FWHM compared to other UTs, we select images
with QUALITY FLAG = 0, for which the quality assessment of the
images is calculated (see Ackley et al., in preparation), to perform
injections, resulting in a total of 143 injected images.

We perform the injection process using iraf (Tody 1986, 1993).
We uniformly inject point sources over each image, with apparent
magnitudes in the range m = 15–21. The total number of injections
which are recovered by SExtractor after difference imaging is
70 891, giving a 63 per cent recovery rate.

We define all 70 891 injections on the difference images to be
the real sample of our training set. Furthermore, we double our real
sample by reflecting all injection stamps along the diagonal image
axis in order to create a larger data set. To build a balanced data set,
we sample 141 782 bogus detections randomly for our bogus sample.
In sum, our entire injection training set contains 283 564 detections.

3.3 MP test set

As a representative example of on-sky performance for genuine
transient sources, we assemble a test set using archival MP detections
from the past year of GOTO operations. This data set has the benefit
over an injection set for accurately sampling across a wide range
of field densities, image PSFs, and sky conditions. MP detections
have similar properties to those of genuine transient objects – they
are detected in the science image, but absent in the template image,
due to the large sky motion of the object, which leaves a ‘clean’
subtraction residual and is similar to what we expect from genuine
transient sources.

To build this test set, we randomly select 12 000 images from the
GOTO data base. For each image, we obtain the positions of all
known MPs within the field of view using the SkyBoT cone search
(Berthier et al. 2006). These positions are then cross-matched with
the difference photometry table of each image, to identify the detected

MPs in each image. We adopt a cross-match radius of 1 arcsec, to
minimize contamination from spurious associations. To generate a
matching bogus sample for the test set, we randomly sample from
the difference image detections, choosing one for every MP detected
per image. This approach provides an unbiased sample of the typical
bogus content of each image and, due to the significant imbalance
between real and bogus detections, provides a largely clean bogus
sample.

The largest source of contamination within this sample is variable
stars. Inevitably, when selecting a random sample of sources in the
image a small fraction of these will be variable, and could show a
clear residual in the difference image, depending on the amplitude
of variability. Those with clear residuals will have incorrect (bogus)
labels and be marked as misidentifications in the training set due
to the classifier scoring them as real. These contaminants would
negatively skew any performance metrics calculated. Determining
algorithmically which labels to assign these detections is difficult,
and is likely to inject bias. We opt to remove all variable stars from
the training set. After generating the test set, we cross-match the
coordinates of the random bogus sample against the ATLAS Variable
Star Catalogue (Heinze et al. 2018), with a generous cross-match
radius of 5 arcsec. This aims to maximize completeness in removal
of variable stars, at the cost of some non-variable objects being
removed. Typically around 4 per cent of the test set is removed with
this cut.

As a final cut, we remove cosmic rays from this test set. These
features cannot always be distinguished in the difference image alone
because when hotpants convolves the science image with the
PSF kernel, these detections become PSF-like. We reject detections
that only have one detection in the individual images that form the
median. We opt for this approach to avoid removing sources that are
undetected in the individual images due to poor signal-to-noise ratio,
yet appear in the median stack.

Applying all of the steps above results in a test set of ≈ 76 440
examples, with the ratio 1: 1.6 MPs to random bogus detections.
Our methodology for automated test set production is detailed more
thoroughly in Killestein et al. (in preparation).

4 FE AT U R E E X T R AC T I O N A N D
PRE-PROCESSING

To extract the pixel intensity features, we crop a 21 × 21 pixel (26
× 26 arcsec2) stamp centred at the image coordinate (X IMAGE,
Y IMAGE) of the detection as measured by SExtractor for each
sample in the training set (see Fig. 1 for some examples). The real
detections are all located at the centre of the stamp with a typical
aperture size of ≈5 arcsec surrounded by shot noise. On the other
hand, the segmentation of the subtraction residual might occur such
that SExtractor would identify multiple bogus detections for a
single astronomical object. The red framed bogus stamp in Fig. 1
is an example showing that a single object is segmented into three
detections after difference imaging. It typically results in an offset
between the segment of each subtraction residual and the actual
position of the source.

Due to the appearance of masked pixels and missing values (off-
edge pixels) within the pixel stamp in some cases, data cleaning was
necessary before performing further analysis. During the subtraction
of bright sources, masked pixels can be generated in the difference
image (e.g. see the bottom left-hand thumbnail in Fig. 1). We clean
the data by replacing all masked and off-edge pixels by the median
value of the stamp, which is approximately the background level.
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Figure 1. Examples of the 21 × 21 pixel thumbnails in the training set.
Top five panels: examples of real detections. Bottom five panels: examples
of bogus detections. The red framed bogus stamp shows the segmentation of
detection in the image subtraction process.

Since each detection has its own signal-to-noise level relative to
the background noise, we normalize the pixel intensities with

f (pi) = pi − p̃

|pi − p̃| log10

(
1 + |pi − p̃|

σ

)
, (1)

where pi is the ith pixel value. p̃ and σ are the median and the
standard deviation of the pixel intensities in the stamp. This scaling
algorithm is adopted from W15 and EYE4 (Bertin 2001), with the
modification that pi is replaced by pi − p̃. In previous studies (e.g.
Bloom et al. 2012; Brink et al. 2013; Wright et al. 2015; Gieseke
et al. 2017), the real sample was collected from the difference image,

4http://www.astromatic.net/software/eye.

Table 2. Model parameters of the ANN and the RF we adopt.

Model parameters Values

Artificial neural network
Size of first Dense layer 100
Activation (hidden layer) ReLu
Regularization λ = 0.03
Optimizer RMSprop
Random forest regressor
n estimators 1000
max features 25
min samples leaf 1

implying that the background level should always be around zero.
In our case, since we use unsubtracted science image detection to
comprise the real sample, the background level is always non-zero.
Therefore, we reset the noise level at the median pixel value of the
stamp.

5 C LASSI FI CATI ON A LGORI THMS

We build our classifiers using two different supervised machine
learning algorithms: the RF (Breiman 2001) and the artificial neural
network (ANN; McCulloch & Pitts 1943). These algorithms are
selected due to their reasonable performance shown in the literature
(Wright et al. 2015). We use the PYTHON packages sklearn
(Pedregosa et al. 2011), keras, and tensorflow (Abadi et al.
2015) to build the RF and the neural network models, respectively.

We tune the hyperparameters of each model to optimize perfor-
mance, and list the optimal hyperparameters in Table 2. We build
our single-layer ANN model with 100 neurons. Activation functions
ReLu and softmax are used in the hidden layer and the output
layer respectively. The optimizer we use in ANN is RMSprop.
For our RF classifier, we build it with n estimators = 1000,
max features = 25, and min samples leaf = 1.

6 R E S U LT S A N D PE R F O R M A N C E

In this section, we show the general performance of the classifiers
trained on the different data sets.

In order to mimic a more realistic case of applying our classifier to
difference images directly, we verify the efficacy of different learning
algorithms by testing on the injection data set (see Section 6.1). We
also compare the performance between the classifiers trained on the
quick-build training set and the injection data set. In Section 6.2, we
compare the performance of the classifiers trained on different data
sets by testing them on our MP test set.

6.1 Performance of the injection test

The injection data set consists of 283 564 samples with a 1:1 balance
ratio between the numbers of real and bogus detections. We label all
injections as real detections and leave the rest as bogus. Therefore,
since there are some real transients existing on the difference images
which are not injections but are labelled as bogus, the false-positive
rate calculated from the injection test could be overestimated. With
known magnitudes of all injections, we can study how the recovery
rate would be affected by the brightness of the detection.

We compare the performance of ANN and RF models by plotting
the receiver operator characteristic (ROC) curves (see Fig. 2). We
conclude that the RF classifier performs better in terms of both area
under the curve (AUC) and FoM.
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Figure 2. The receiver operator characteristic (ROC) curves of the injection
test applied to different learning algorithms. The ANN and RF classifiers are
represented by green and orange lines, respectively. The RF classifier shows
a better performance, with FoM, indicated by the red line
of 12.5 per cent.

Figure 3. MDR for the injections as a function of magnitude. The RF
classifier indicated by the orange line always shows a lower MDR over the
ANN model (green line). The blue blocks show the cumulative distribution
function (CDF) of the magnitude of the injections.

Table 3. Decision boundaries and prediction accuracies at FPR = 0.01 in
the injection test.

Algorithms Decision Real Bogus FoM
boundary accuracy accuracy

(per cent) (per cent) (per cent)

RF 0.75 87.5 99.0 12.5
ANN 0.91 83.9 99.0 16.1

We investigate how the MDR varies with the brightness of the
detections in Fig. 3. The decision boundary is set to FPR = 0.01 for
each of the learning algorithms (see Table 3). The RF classifier has
the lowest MDR over the range of magnitudes from m = 15 to 20.

Figure 4. The ROC curves of different learning algorithms tested on the MP
test set. QB-ANN and QB-RF classifier are represented by green and orange
lines, respectively. The QB-RF classifier shows the best performance with the
FoM of 5.2 per cent. The IT-RF classifier represented by the red line shows
a consistent performance with the QB-RF classifier.

Table 4. Decision boundaries and prediction accuracies at FPR = 0.01
testing on the MP test set.

Algorithms Decision Real Bogus FoM F1
boundary accuracy accuracy score

(per cent) (per cent) (per cent)

QB-RF 0.61 94.8 99.0 5.2 0.97
IT-RF 0.55 91.9 99.0 8.1 0.95
QB-ANN 0.86 89.2 99.0 10.8 0.94

We also plot the cumulative distribution function (CDF) against the
magnitude in Fig. 3. The constant step size of about 10–15 per cent
from m = 16 to 18.5 in the CDF shows a uniform magnitude
distribution of the injections in our data set. The decrease in the
step size beyond m = 18.5 is due to the drop of the SExtractor
recovery rate with the increase of magnitude as we are nearing the
limiting magnitude of GOTO.

6.2 Performance on the MP data set

In this section, we include one more RF classifier trained on the
injection set (IT-RF) in our analyses. The purpose of comparing
with the IT-RF classifier is to show that the classifiers trained on our
quick-build training set also perform a consistently with the classifier
trained on the data solely collected from the difference images.

We test our classifiers on real data by using our MP test set (see
Section 3.3). According to the ROC curves in Fig. 4, the RF classifier
trained on the quick-build training set (QB-RF) shows the lowest
FoM of 5.2 per cent. Both AUC and FoM also show that QB-RF and
IT-RF perform consistently with each other. The decision boundaries
used in this section and the FoMs of all classifiers are also showed
in Table 4. Since our MP test set is slightly unbalanced with real-to-
bogus ratio of 1: 1.3, we also list F1 scores, which helps to estimate
the goodness of balance between the recall and the precision, in
Table 4. The F1 score of QB-RF is closest to 1, indicating that this
model is superior to the other models considered. We also show
the confusion matrices for different classifiers at a fixed FPR of
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Figure 5. Confusion matrices of different models performing on the MP test
set. The decision boundary of each classifier is set at FPR = 0.01. The QB-RF
shows the highest real prediction accuracy of 94.8 per cent.

Figure 6. Venn diagram of the number of misclassified sources for QB-RF
and IT-RF. It shows that ≈ 80 per cent of the QB-RF misclassifications are
also misclassified by IT-RF.

1 per cent in Fig. 5. We plot the Venn diagram in Fig. 6 to compare
the misclassification consistency between QB-RF and IT-RF. The
intersection is about 80 per cent of the QB-RF population, which
implies the misclassifications of the two models are consistent with
each other.

Fig. 7 shows that both QB-RF and IT-RF classifiers can separate
bogus and real detections in the MP test set effectively. There are
small overlapping regions at around 0.5 for the QB-RF distribution
and 0.4 for the IT-RF distribution. The difference between these two
decision boundaries is caused by the ratio difference between the
numbers of the real and the bogus samples in the training sets.

We can see that the results showed in Figs 4 and 8 are different
from what the Figs 2 and 3 present. The QB-RF shows a much
lower FoM of about 5 per cent in Fig. 4 than in Fig. 2. However, the
conclusions that can be drawn from both ROC curves are the same,
the QB-RF performs the best in terms of both FoM and AUC. The
MDR-mag plots, in Fig. 8, show that the MDR of the QB-RF always
stays below 0.3 even up to m = 20, which is much lower than the one
of >0.9 in Fig. 3. There are several potential factors causing these
differences. First, we can see the CDFs in Figs 3 and 8 are different,
indicating two different brightness distributions of the real samples
in the data sets. In the injection data set, we inject sources with a
uniform brightness distribution. On the other hand, in the MP test set,
there is a more accurate representation of the generalized magnitude
distribution in comparison to the artificial one from our injection set.
Secondly, we only use the images taken in a particular field with
particular instruments, UT3 and UT4, to build our injection set. In
contract, the MP test set includes detections from images taken with
a wider range of conditions, with different UTs, fields, image quality
scores, etc. Finally, the PSF models used to generate the injections
can never be fully representative of the range of genuine detections
appearing on the difference images as they are discretized on the
image.

Figure 7. The classification score distributions of the MP test set. The top and
bottom panels represent the QB-RF and the IT-RF classifiers respectively. The
orange histograms represent the score distribution of the bogus detections,
meanwhile the blue histograms represent the distribution of the MPs. The red
lines indicate the decision boundaries set at FPR = 0.01.

Figure 8. MDR for the MPs as a function of magnitudes. The QB-RF
classifier indicated by the orange line always shows the lowest MDR. The
MDRs of QB-ANN and IT-RF are also plotted with green and red lines,
respectively. The blue blocks show the CDF with magnitude of the MPs.
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Figure 9. The RF feature importance of each pixel over the stamp. It shows
that the central 7 × 7 pixels are the most important features for separating
real and bogus detections using our QB-RF classifier.

We provide evidence that the training set constructed using
our quick-building strategy is not only fast and convenient, but
shows nearly identical performance to the classifiers trained in the
traditional way. Since the main scope of this paper is to show how
to address the problem of assembling a sufficiently large data set for
supervised machine learning, the performance comparison between
the different learning algorithms is for reference only. The results
might depend on the architectures of the classifiers, the feature
representation, etc.

6.3 Feature importance

To understand how the RF classifier calculates the classification
score for a detection thumbnail, we can simply plot out the feature
importance of each pixel (see Fig. 9). As we expect, to classify
whether a detection is real or bogus, the classifier only considers
the central 7 × 7 pixels as the most important features. This area is
consistent with the 90 per cent percentile of the FWHM distribution,
which is 7.8 pixels for GOTO prototype performance, for the real
samples in our QB training set.

Fig. 9 shows that the central pixel is not the most important pixel
feature among the entire stamp. This could be due to the elongation
of the PSF of the real detections we used to train our classifier (see
Fig. 1).

Additionally, the pixels outside the 7 × 7 central region have
very low values of feature importance. There are two conclusions
that can be drawn from this observation. The classification scores
for those transients close to bright objects or galaxies would not
be affected. However, the subtraction residuals from the bright
objects could easily be scored with a high value. Fortunately, the
subtraction residuals due to the bright objects can easily be filtered
by human vetting which should always be done as a confirmation of
the candidates after the automatic real-bogus classification process.
Another method of solving this problem is to reject candidates within
a certain angular distance from bright objects.

The feature importance of our RF model prompted us to train
another classifier with a different stamp size. We used stamp sizes of
7 × 7 and 15 × 15 pixels to train additional models (called QB-RF7
and QB-RF15). Since we use the median pixel value on each stamp
as the noise level to perform scaling and filling the masked pixels, if
the stamp size is close to the PSF area, the median pixel value may
not well represent the noise level. Therefore, we use the original 21
× 21 pixel stamp to obtain the noise level, and then use another crop
to generate a smaller pixel stamp for our training features.

Figure 10. The ROC curves of the QB-RF (orange), the QB-RF7 (magenta),
and the QB-RF15 (grey) classifiers tested on the MP test set. The QB-RF7
doubles the FoM compared to the QB-RF. Both QB-RF and QB-RF15 perform
consistently.

We use the MP test set only to compare the differences between
models trained with different stamp sizes. Fig. 10 shows that the
FoM of the QB-RF7 is about 10 per cent, which is about twice that
for QB-RF, but the ROC curve of the QB-RF15 is consistent with
the QB-RF classifier. Therefore, we suggest using stamp sizes of at
least twice the 90 per cent percentile of the FWHM for training.

7 C O N C L U S I O N A N D S U M M A RY

In this paper, we design and test methods to separate real detections
in optical difference imaging from bogus ones, by using machine
learning methods. Manually building a large training set is very time
consuming that motivates the use of detections in the science images,
which should look identical to transients in the subtracted images, as
the real sample. Our training set consists of 400 000 real and bogus
detections, respectively. We use scaled pixel values over a 21 × 21-
pixel stamp centred at the detection position to represent the features
of each detection to calculate the real-bogus score.

The RF classifier is shown to have a better performance compared
to ANN by testing with the MP data set. We obtain an overall accuracy
of 97.1 per cent and FoM of 5.2 per cent with the decision boundary
set to 0.61. We also show that the classifier trained on our quick-build
training set has a similar performance with the classifier trained on
our injection data set.

Compared to the traditional methods used to build a training set for
supervised machine learning methods, our strategy can help to build
a training set of reasonable size within few days without having to
spend weeks to months on manual inspection and human verification.
We also show that the performance of the classifier built based on this
strategy is comparable to the classifier built by traditional methods.

We also build two other RF classifiers by training on 7 × 7 and 15
× 15 pixel stamps, to study how the performance varies with stamp
size. We show that a 15 × 15 pixel stamp is sufficient to train our
model. Therefore, we recommend using at least twice the 90 per cent
percentile FWHM as the training stamp size.

While the quick-build strategy we use to build our training set is
both fast and effective to train our classifier, we do not prescribe this
technique to assess the best method of building a classifier overall.
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Instead, we suggest it could serve as a preliminary classifier for
transient searches with newly-operational optical telescopes, or being
ideal for small research collaborations that decide to pursue transient
search projects. Since we only use the pixel intensity for performing
classification, the idea of this work, in principle, should be directly
applicable with other instruments.
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Ivezić Ž. et al., 2019, ApJ, 873, 111
Kaiser N. et al., 2010, in Stepp L. M., Gilmozzi R., Hall H. J., eds, Proc.

SPIE Cnf. Ser. Vol. 7730, Ground-Based and Airborne Telescopes III.
SPIE, Bellingham, p. 77330e

McCulloch W. S., Pitts W., 1943, Bull. Math. Biophys., 5, 115
Masci F. J. et al., 2018, PASP, 131, 018003
Metzger B. D., 2017, Living Rev. Relativ., 20, 3
Pedregosa F. et al., 2011, J. Mach. Learn. Res., 12, 2825
Tody D., 1986, The IRAF Data Reduction and Analysis System, Proc. SPIE

0627, Instrumentation in Astronomy VI
Tody D., 1993, IRAF in the Nineties, Vol. 52, Astronomical Data Analysis

Software and Systems II, A.S.P. Conference Series
Tonry J. L. et al., 2018, PASP, 130, 064505
Wolf C. et al., 2018, Publ. Astron. Soc. Aust., 35, e010
Wright D. E. et al., 2015, MNRAS, 449, 451 (W15)

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 499, 6009–6017 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/4/6009/5920226 by U
niversity of Portsm

outh Library user on 01 February 2021

http://dx.doi.org/ 10.1103/PhysRevLett.116.241102 
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1051/aas:1996164
http://dx.doi.org/10.1086/668468
http://dx.doi.org/10.1093/mnras/stt1306
http://dx.doi.org/10.3847/1538-4357/836/1/97
http://dx.doi.org/10.1126/science.aap9811
http://dx.doi.org/10.1088/0004-637X/696/1/870
http://dx.doi.org/10.1088/0004-6256/135/1/338
http://dx.doi.org/10.1093/mnras/stx2161
http://dx.doi.org/10.3847/1538-3881/aae47f
http://dx.doi.org/10.3847/1538-4357/ab042c
http://dx.doi.org/10.1088/1538-3873/aae8ac
http://dx.doi.org/10.1007/s41114-017-0006-z
http://dx.doi.org/10.1088/1538-3873/aabadf
http://dx.doi.org/10.1017/pasa.2018.5
http://dx.doi.org/10.1093/mnras/stv292

