88 research outputs found

    Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Get PDF
    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits

    Extreme plasticity in reproductive biology of an oviparous lizard

    Get PDF
    Ecology and Evolution published by John Wiley & Sons Ltd. Most oviparous squamate reptiles lay their eggs when embryos have completed less than one-third of development, with the remaining two-thirds spent in an external nest. Even when females facultatively retain eggs in dry or cold conditions, such retention generally causes only a minor (Lacerta agilis) from an experimentally founded field population (established ca. 20 years ago on the southwest coast of Sweden) exhibited wide variation in incubation periods even when the eggs were kept at standard (25°C) conditions. Females that retained eggs in utero for longer based on the delay between capture and oviposition produced eggs that hatched sooner. In the extreme case, eggs hatched after only 55% of the "normal" incubation period. Although the proximate mechanisms underlying this flexibility remain unclear, our results from this first full field season at the new study site show that females within a single cold-climate population of lizards can span a substantial proportion of the continuum from "normal" oviparity to viviparity

    New Renewable and Biodegradable Particleboards from Jatropha Press Cakes

    Get PDF
    The influence of thermo-pressing conditions on the mechanical properties of particleboards obtained from Jatropha press cakes was evaluated in this study. Conditions such as molding temperature and press cake oil content were included. All particleboards were cohesive, with proteins and fibers acting respectively as binder and reinforcing fillers. Generally, it was the molding temperature that most affected particleboard mechanical properties. The most resistant boards were obtained using 200°C molding temperature. Glass transition of proteins then occurred during molding, resulting in effective wetting of the fibers. At this optimal molding temperature, the best compromise between flexural properties (7.2 MPa flexural strength at break and 2153 MPa elastic modulus), Charpy impact strength (0.85 kJ/m²) and Shore D surface hardness (71.6°), was a board obtained from press cake with low oil content (7.7%). Such a particleboard would be usable as interlayer sheets for pallets, for the manufacture of containers or furniture, or in the building trade

    Chemisorption of molecular oxygen on Cu(1 0 0): a Hartree¿Fock and density functional study

    No full text
    The interaction of molecular oxygen with the Cu(1 0 0) surface has been studied by using both Hartree–Fock and density functional methods in the framework of the cluster model approach. In this study, we have used the Cu8(6,2) cluster in order to simulate the O2 molecular adsorption on different high symmetry chemisorption sites (top–top, bridge–fourfold, bridge–top, fourfold–fourfold) on the Cu(1 0 0) surface. High level non-local density functional (NLSD) computations indicate that the more stable chemisorption site is the bridge–bridge followed by the top–top, bridge–top and bridge–fourfold ones. The calculated 1s O XPS shifts are in good agreement with the experimental indications.Postprint (published version

    Chemisorption of molecular oxygen on Cu(1 0 0): a Hartree¿Fock and density functional study

    No full text
    The interaction of molecular oxygen with the Cu(1 0 0) surface has been studied by using both Hartree–Fock and density functional methods in the framework of the cluster model approach. In this study, we have used the Cu8(6,2) cluster in order to simulate the O2 molecular adsorption on different high symmetry chemisorption sites (top–top, bridge–fourfold, bridge–top, fourfold–fourfold) on the Cu(1 0 0) surface. High level non-local density functional (NLSD) computations indicate that the more stable chemisorption site is the bridge–bridge followed by the top–top, bridge–top and bridge–fourfold ones. The calculated 1s O XPS shifts are in good agreement with the experimental indications

    Imaging of the internal structure of an asteroid analogue from quasi-monostatic microwave measurement dataI. The frequency domain approach

    No full text
    International audienceContext. The internal structure of small Solar System bodies (SSSBs) is still poorly understood, although it can provide important information about the formation process of asteroids and comets. Space radars can provide direct observations of this structure. Aims. In this study, we investigate the possibility to infer the internal structure with a simple and fast inversion procedure applied to radar measurements. We consider a quasi-monostatic configuration with multiple measurements over a wide frequency band, which is the most common configuration for space radars. This is the first part (Paper I) of a joint study considering methods to analyse and invert quasi-monostatic microwave measurements of an asteroid analogue. This paper focuses on the frequency domain, while a separate paper focuses on time-domain methods. Methods. We carried out an experiment in the laboratory equivalent to the probing of an asteroid using the microwave analogy (multiplying the wavelength and the target dimension by the same factor). Two analogues based on the shape of the asteroid 25143 Itokawa were constructed with different interiors. The electromagnetic interaction with these analogues was measured in an anechoic chamber using a multi-frequency radar and a quasi-monostatic configuration. The electric field was measured on 2372 angular positions (corresponding to a sampling offering complete information). We then inverted these data with two classical imaging procedures, allowing us to reach the structural information of the analogues interior. We also investigated reducing the number of radar measurements used in the imaging procedures, that is both the number of transmitter-receiver pairs and the number of frequencies. Results. The results show that the 3D map of the analogues can be reconstructed without the need for a reference target. Internal structural differences are distinguishable between the analogues. This imaging can be achieved even with a reduced number of measurements. With only 35 well-selected frequencies over 321 and 1257 transmitter-receiver pairs, the reconstructions are similar to those obtained with the entire frequency band
    corecore