19 research outputs found

    Improving PBL in Empowering Meta cognitive Skill of Students

    Get PDF
    Abstract Objective: Problem-Based Learning (PBL) is a potential constructivist learning strategy that empowers students’ Meta cognitive skill. PBL focuses on problem, involves thinking activity to solve problems, and correlates to cognitive function of students. Methods: The implementation of PBL reveals various benefits, but there are also some weaknesses in this learning strategy. Thus, it is necessary to implement a certain learning strategy that can cover the PBL weaknesses, such as Reading, Questioning, and Answering (RQA) learning strategy. RQA is a new learning strategy developed based on a fact that almost all students do not read the next lecture materials, causing failure of learning strategy planned and finally the students’ comprehension becomes low. RQA is also potential to empower students’ Meta cognitive skill. Findings: The integration of RQA and PBL learning strategy is called PBL-RQA learning strategy. This study was a quasi-experimental study designed to compare the effect of PBL, RQA, and PBL-RQA learning strategies on the students’ Meta cognitive skill of Faculty of Mathematics and Science, State University of Makassar. Application: The results of the study showed that the potency of PBL learning strategy in empowering the students’ Meta cognitive skill has been increased by integrating it to RQA learning strategy. The meta cognitive skill mean score of the students taught by PBL-RQA learning strategy was 21% higher than that of the students taught by PBL and 26.9% higher than that of the students taught by RQA learning strategy. Keywords: Answering, Meta Cognitive Skill, Problem-Based Learning, Questioning, Reading, PBL-RQ

    MALDI-TOF typing highlights geographical and fluconazole resistance clusters in Candida glabrata2188

    No full text
    Utilizing matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra for Candida glabrata typing would be a cost-effective and easy-to-use alternative to classical DNA-based typing methods. This study aimed to use MALDI-TOF for the typing of C. glabrata clinical isolates from various geographical origins and test its capacity to differentiate between fluconazole-sensitive and -resistant strains. Both microsatellite length polymorphism (MLP) and MALDI-TOF mass spectra of 58 C. glabrata isolates originating from Marseilles (France) and Tunis (Tunisia) as well as collection strains from diverse geographic origins were analyzed. The same analysis was conducted on a subset of C. glabrata isolates that were either susceptible (MIC &lt;/= 8 mg/l) or resistant (MIC &gt;/= 64 mg/l) to fluconazole. According to the seminal results, both MALDI-TOF and MLP classifications could highlight C. glabrata population structures associated with either geographical dispersal barriers (p &lt; 10-5) or the selection of antifungal drug resistance traits (&lt;10-5). In conclusion, MALDI-TOF geographical clustering was congruent with MPL genotyping and highlighted a significant population genetic structure according to fluconazole susceptibility in C. glabrata. Furthermore, although MALDI-TOF and MLP resulted in distinct classifications, MALDI-TOF also classified the isolates with respect to their fluconazole susceptibility profile. Further prospective studies are required to evaluate the capacity of MALDI-TOF typing to investigate C. glabrata infection outbreaks and predict the antifungal susceptibility profile of clinical laboratory isolates</p
    corecore