1,195 research outputs found

    Finite temperature Z(N) phase transition with Kaluza-Klein gauge fields

    Get PDF
    If SU(N) gauge fields live in a world with a circular extra dimension, coupling there only to adjointly charged matter, the system possesses a global Z(N) symmetry. If the radius is small enough such that dimensional reduction takes place, this symmetry is spontaneously broken. It turns out that its fate at high temperatures is not easily decided with straightforward perturbation theory. Utilising non-perturbative lattice simulations, we demonstrate here that the symmetry does get restored at a certain temperature T_c, both for a 3+1 and a 4+1 dimensional world (the latter with a finite cutoff). To avoid a cosmological domain wall problem, such models would thus be allowed only if the reheating temperature after inflation is below T_c. We also comment on the robustness of this phenomenon with respect to small modifications of the model.Comment: 18 pages. Revised version, to appear in Nucl.Phys.

    Meson Correlation Function and Screening Mass in Thermal QCD

    Full text link
    Analytical results for the spatial dependence of the correlation functions for all meson excitations in perturbative Quantum Chromodynamics, the lowest order, are calculated. The meson screening mass is obtained as a large distance limit of the correlation function. Our analysis leads to a better understanding of the excitations of Quark Gluon Plasma at sufficiently large temperatures and may be of relevance for future numerical calculations with fully interacting Quantum Chromodynamics.Comment: 11 page

    Mass and chemical asymmetry in QCD matter

    Full text link
    We consider two-flavor asymmetric QCD combined with a low-energy effective model inspired by chiral perturbation theory and lattice data to investigate the effects of masses, isospin and baryon number on the pressure and the deconfinement phase transition. Remarkable agreement with lattice results is found for the critical temperature behavior. Further analyses of the cold, dense case and the influence of quark mass asymmetry are also presented.Comment: 4 pages, 4 figures; to appear in the Proceedings of Strong and Electroweak Matter 2008 (SEWM08), August 26-29, Amsterdam, The Netherland

    A Brane model with two asymptotic regions

    Full text link
    Some brane models rely on a generalization of the Melvin magnetic universe including a complex scalar field among the sources. We argue that the geometric interpretation of Kip.S.Thorne of this geometry restricts the kind of potential a complex scalar field can display to keep the same asymptotic behavior. While a finite energy is not obtained for a Mexican hat potential in this interpretation, this is the case for a potential displaying a broken phase and an unbroken one. We use for technical simplicity and illustrative purposes an ad hoc potential which however shares some features with those obtained in some supergravity models. We construct a sixth dimensional cylindrically symmetric solution which has two asymptotic regions: the Melvin-like metric on one side and a flat space displaying a conical singularity on the other. The causal structure of the configuration is discussed. Unfortunately, gravity is not localized on the brane.Comment: 9 pages revtex, 4 figures,version to appear in PR

    Registro dos ensaios clĂ­nicos

    Full text link

    A simple way to generate high order vacuum graphs

    Get PDF
    We describe an efficient practical procedure for enumerating and regrouping vacuum Feynman graphs of a given order in perturbation theory. The method is based on a combination of Schwinger-Dyson equations and the two-particle-irreducible ("skeleton") expansion. The regrouping leads to skeletons containing only free propagators, together with "ring diagrams" containing all the self-energy insertions. As a consequence, relatively few diagrams need to be drawn and integrations carried out at any single stage of the computation and, in low dimensions, overlapping ultraviolet/infrared subdivergences can be cleanly isolated. As an illustration we enumerate the graphs contributing to the 4-loop free energy in QCD, explicitly in a continuum and more compactly in a lattice regularization.Comment: 19 pages. Reference added. To appear in Phys.Rev.

    Masses and Phase Structure in the Ginzburg-Landau Model

    Get PDF
    We study numerically the phase structure of the Ginzburg-Landau model, with particular emphasis on mass measurements. There is no local gauge invariant order parameter, but we find that there is a phase transition characterized by a vanishing photon mass. For type I superconductors the transition is of 1st order. For type II 1st order is excluded by susceptibility analysis, but the photon correlation length suggests 2nd order critical behaviour with \nu ~ 1/2. The scalar mass, in contrast, does not show clear critical behaviour in the type II regime for V \to \infty, contrary to the conventional picture.Comment: 16 pages, 6 figures. More data gathered, allowing more definite conclusion

    The monopole mass in the three-dimensional Georgi-Glashow model

    Get PDF
    We study the three-dimensional Georgi-Glashow model to demonstrate how magnetic monopoles can be studied fully non-perturbatively in lattice Monte Carlo simulations, without any assumptions about the smoothness of the field configurations. We examine the apparent contradiction between the conjectured analytic connection of the `broken' and `symmetric' phases, and the interpretation of the mass (i.e., the free energy) of the fully quantised 't Hooft-Polyakov monopole as an order parameter to distinguish the phases. We use Monte Carlo simulations to measure the monopole free energy and its first derivative with respect to the scalar mass. On small volumes we compare this to semi-classical predictions for the monopole. On large volumes we show that the free energy is screened to zero, signalling the formation of a confining monopole condensate. This screening does not allow the monopole mass to be interpreted as an order parameter, resolving the paradox.Comment: 12 pages, 7 figures, uses revtex. Minor changes made to the text to match with the published version at http://link.aps.org/abstract/PRD/v65/e12500
    • 

    corecore