112 research outputs found

    Absolute quantification of the host-to-parasite DNA ratio in Theileria parva-infected lymphocyte cell lines

    Get PDF
    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field

    Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate

    Get PDF
    Funding Information: Richard Thomson Luque is employed by Sumaya-Biotech GmbH & Co. KG that received support by the EU Malaria Fund. This work was supported in part by the U.S. National Institutes of Health (NIH) through awards R01 AI141900 and U19 AI110820 to JCS. The authors extend their heartfelt gratitude to the dedicated researchers, institutions, and study volunteers participating in malaria vaccine studies who have relentlessly pursued the formidable objective of jointly creating a malaria vaccine candidate centered around the merozoite surface antigen 1. The collective endeavors of the malaria research community have profoundly driven scientific advancements presented in this manuscript. Publisher Copyright: © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Introduction: Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. Areas covered: Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. Expert opinion: Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.publishersversionpublishe

    Characterising co-infections with Plasmodium spp., Mansonella perstans or Loa loa in asymptomatic children, adults and elderly people living on Bioko Island using nucleic acids extracted from malaria rapid diagnostic tests

    Get PDF
    BACKGROUND: Regular and comprehensive epidemiological surveys of the filarial nematodes Mansonella perstans and Loa loa in children, adolescents and adults living across Bioko Island, Equatorial Guinea are lacking. We aimed to demonstrate that blood retained on malaria rapid diagnostic tests, commonly deployed for malaria surveys, could be used as a source of nucleic acids for molecular based detection of M. perstans and L. loa. We wanted to determine the positivity rate and distribution of filarial nematodes across different age groups and geographical areas as well as to understand level of co-infections with malaria in an asymptomatic population. METHODOLOGY: M. perstans, L. loa and Plasmodium spp. parasites were monitored by qPCR in a cross-sectional study using DNA extracted from a subset malaria rapid diagnostic tests (mRDTs) collected during the annual malaria indicator survey conducted on Bioko Island in 2018. PRINCIPAL FINDINGS: We identified DNA specific for the two filarial nematodes investigated among 8.2% (263) of the 3214 RDTs screened. Positivity rates of M. perstans and L. loa were 6.6% and 1.5%, respectively. M. perstans infection were more prominent in male (10.5%) compared to female (3.9%) survey participants. M. perstans parasite density and positivity rate was higher among older people and the population living in rural areas. The socio-economic status of participants strongly influenced the infection rate with people belonging to the lowest socio-economic quintile more than 3 and 5 times more likely to be L. loa and M. perstans infected, respectively. No increased risk of being co-infected with Plasmodium spp. parasites was observed among the different age groups. CONCLUSIONS/SIGNIFICANCE: We found otherwise asymptomatic individuals were infected with M. perstans and L. loa. Our study demonstrates that employing mRDTs probed with blood for malaria testing represents a promising, future tool to preserve and ship NAs at room temperature to laboratories for molecular, high-throughput diagnosis and genotyping of blood-dwelling nematode filarial infections. Using this approach, asymptomatic populations can be reached and surveyed for infectious diseases beyond malaria

    Whole-genome sequencing for One Health surveillance of antimicrobial resistance in conflict zones: a case study of Salmonella spp. and Campylobacter spp. in the West Bank, Palestine

    Get PDF
    Antimicrobial resistance (AMR) is a critical global concern driven by the overuse, misuse, and/or usage of inadequate antibiotics on humans, animals' agriculture, and as a result of contaminated environments. This study is the first One Health survey in the Middle East that incorporated whole-genome sequencing (WGS) to examine the spread of AMR in Campylobacter spp. and Salmonella spp. This cross-sectional study was conducted to examine the role of AMR at the human-animal-environmental interface and was performed in Ramallah/Al-Bireh and Jerusalem governorates of the central West Bank, Palestine. In 2021 and 2022, a total of 592 samples were collected and analyzed. From a total of 65 Campylobacter jejuni and 19 Salmonella spp. isolates, DNA was extracted for WGS using Oxford Nanopore Technologies MinION platform. We found that the dominant serotypes of C. jejuni and Salmonella enterica were present in chicken manure, chicken meat sold in markets, and feces of asymptomatic farm workers, with high genetic similarities between the isolates regardless of origin. Additionally, our results showed rapid strain turnover in C. jejuni from the same sites between 2021 and 2022. Most of the positive Salmonella spp. samples were multidrug-resistant (MDR) S. enterica serovar Muenchen carrying the plasmid of emerging S. infantis (pESI) megaplasmid, conferring resistance to multiple antibiotics. Our findings highlight the spread of MDR foodborne pathogens from animals to humans through the food chain, emphasizing the importance of a One Health approach that considers the interconnections between human, animal, and environmental health. IMPORTANCE Prior to this study, there existed hardly an integrated human-animal-environmental study of Salmonellosis and Campylobacteriosis and related AMR in Middle Eastern countries. The few existing studies lack robust epidemiological study designs, adequate for a One Health approach, and did not use WGS to determine the circulating serotypes and their AMR profiles. Civil unrest and war in Middle Eastern countries drive AMR because of the breakdown of public health and food security services. This study samples simultaneously humans, animals, and the environment to comprehensively investigate foodborne pathogens in the broiler chicken production chain in Palestine using WGS. We show that identical serotypes of C. jejuni and S. enterica can be found in samples from chicken farms, chicken meat sold in markets, and asymptomatic broiler chicken production workers. The most striking feature is the rapid dynamic of change in the genetic profile of the detected species in the same sampling locations. The majority of positive Salmonella spp. samples are MDR S. enterica serovar Muenchen isolates carrying the pESI megaplasmid. The results demonstrate a close relationship between the S. enterica serovar Muenchen isolates found in our sample collection and those responsible for 40% of all clinical Salmonella spp. isolates in Israel as previously reported, with a sequence identity of over 99.9%. These findings suggest the transboundary spread of MDR S. enterica serovar Muenchen strains from animals to humans through the food chain. The study underscores the importance of combining integrated One Health studies with WGS for detecting environmental-animal-human transmission of foodborne pathogens that could not be detected otherwise. This study showcases the benefits of integrated environmental-animal-human sampling and WGS for monitoring AMR. Environmental samples, which may be more accessible in conflict-torn places where monitoring systems are limited and regulations are weak, can provide an effective AMR surveillance solution. WGS of bacterial isolates provides causal inference of the distribution and spread of bacterial serotypes and AMR in complex social-ecological systems. Consequently, our results point toward the expected benefits of operationalizing a One Health approach through closer cooperation of public and animal health and food safety authorities

    Early whole blood transcriptional responses to radiation-attenuated; Plasmodium falciparum; sporozoite vaccination in malaria naive and malaria pre-exposed adult volunteers

    Get PDF
    BACKGROUND: Vaccination with radiation-attenuated Plasmodium falciparum sporozoites is known to induce protective immunity. However, the mechanisms underlying this protection remain unclear. In this work, two recent radiation-attenuated sporozoite vaccination studies were used to identify potential transcriptional correlates of vaccination-induced protection. METHODS: Longitudinal whole blood RNAseq transcriptome responses to immunization with radiation-attenuated P. falciparum sporozoites were analysed and compared across malaria-naive adult participants (IMRAS) and malaria-experienced adult participants (BSPZV1). Parasite dose and method of delivery differed between trials, and immunization regimens were designed to achieve incomplete protective efficacy. Observed protective efficacy was 55% in IMRAS and 20% in BSPZV1. Study vaccine dosings were chosen to elicit both protected and non-protected subjects, so that protection-associated responses could be identified. RESULTS: Analysis of comparable time points up to 1 week after the first vaccination revealed a shared cross-study transcriptional response programme, despite large differences in number and magnitude of differentially expressed genes between trials. A time-dependent regulatory programme of coherent blood transcriptional modular responses was observed, involving induction of inflammatory responses 1-3 days post-vaccination, with cell cycle responses apparent by day 7 in protected individuals from both trials. Additionally, strongly increased induction of inflammation and interferon-associated responses was seen in non-protected IMRAS participants. All individuals, except for non-protected BSPZV1 participants, showed robust upregulation of cell-cycle associated transcriptional responses post vaccination. CONCLUSIONS: In summary, despite stark differences between the two studies, including route of vaccination and status of malaria exposure, responses were identified that were associated with protection after PfRAS vaccination. These comprised a moderate early interferon response peaking 2 days post vaccination, followed by a later proliferative cell cycle response steadily increasing over the first 7 days post vaccination. Non-protection is associated with deviations from this model, observed in this study with over-induction of early interferon responses in IMRAS and failure to mount a cell cycle response in BSPZV1

    Efficacy and safety of intravenous ferric carboxymaltose compared with oral iron for the treatment of iron deficiency anaemia in women after childbirth in Tanzania: a parallelgroup, open-label, randomised controlled phase 3 trial

    Get PDF
    Background: Iron deficiency anaemia is of major concern in low-income settings, especially for women of childbearing age. Oral iron substitution efficacy is limited by poor compliance and iron depletion severity. We aimed to assess the efficacy and safety of intravenous ferric carboxymaltose versus oral iron substitution following childbirth in women with iron deficiency anaemia in Tanzania. Methods: This parallel-group, open-label, randomised controlled phase 3 trial was done at Bagamoyo District Hospital and Mwananyamala Hospital, Tanzania. Eligible participants were close to delivery and had iron deficiency anaemia defined as a haemoglobin concentration of less than 110 g/L and a ferritin concentration of less than 50 μg/L measured within 14 days before childbirth. Participants were randomly assigned 1:1 to receive intravenous ferric carboxymaltose or oral iron, stratified by haemoglobin concentration and site. Intravenous ferric carboxymaltose was administered at a dose determined by the haemoglobin concentration and bodyweight (bodyweight 35 kg to <70 kg and haemoglobin ≥100 g/L: 1000 mg in one dose; bodyweight 35 kg to <70 kg and haemoglobin <100 g/L, or bodyweight ≥70 kg and haemoglobin ≥100 g/L: 1500 mg in two doses at least 7 days apart; bodyweight ≥70 kg and haemoglobin 115 g/L) at 6 weeks. Follow-up visits were at 6 weeks, and 3, 6, and 12 months. Analyses were done in the modified intention-totreat population of participants who had a 6-week haemoglobin concentration result, using logistic and linear regression models for binary and continuous outcomes, adjusted for baseline haemoglobin concentration and site. This trial is registered with ClinicalTrials.gov, NCT02541708. Findings: Between Oct 8, 2015, and March 14, 2017, 533 individuals were screened and 230 were enrolled and randomly assigned to a study group (114 to intravenous iron, 116 to oral iron). At 6 weeks, 94 (82%) participants in the intravenous iron group and 92 (79%) in the oral iron group were assessed for the primary outcome. 75 (80%) participants in the intravenous iron group and 47 (51%) in the oral iron group had normalised haemoglobin (odds ratio 4·65, 95% CI 2·33-9·27). There were two mild to moderate infusion-related adverse events; and five serious adverse events (three in the intravenous iron group, two in the oral iron group), unrelated to the study medication. Interpretation: Intravenous iron substitution with ferric carboxymaltose was safe and yielded a better haemoglobin response than oral iron. To our knowledge, this is the first study to provide evidence of the benefits and safety of intravenous iron substitution in a low-income setting

    Analysis of nucleic acids extracted from rapid diagnostic tests reveals a significant proportion of false positive test results associated with recent malaria treatment

    Get PDF
    Background: Surveillance programmes often use malaria rapid diagnostic tests (RDTs) to determine the proportion of the population carrying parasites in their peripheral blood to assess the malaria transmission intensity. Despite an increasing number of reports on false-negative and false-positive RDT results, there is a lack of systematic quality control activities for RDTs deployed in malaria surveillance programmes. Methods: The diagnostic performance of field-deployed RDTs used for malaria surveys was assessed by retrospective molecular analysis of the blood retained on the tests. Results: Of the 2865 RDTs that were collected in 2018 on Bioko Island and analysed in this study, 4.7% had a falsenegative result. These false-negative RDTs were associated with low parasite density infections. In 16.6% of analysed samples, masked pfhrp2 and pfhrp3 gene deletions were identified, in which at least one Plasmodium falciparum strain carried a gene deletion. Among all positive RDTs analysed, 28.4% were tested negative by qPCR and therefore considered to be false-positive. Analysing the questionnaire data collected from the participants, this high proportion of false-positive RDTs could be explained by P. falciparum histidine rich protein 2 (PfHRP2) antigen persistence after recent malaria treatment. Conclusion: Malaria surveillance depending solely on RDTs needs well-integrated quality control procedures to assess the extent and impact of reduced sensitivity and specificity of RDTs on malaria control programmes

    Re-annotation of the Theileria parva genome refines 53% of the proteome and uncovers essential components of N-glycosylation, a conserved pathway in many organisms

    Get PDF
    The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome.; The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized.; The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites

    Genomic surveillance enables the identification of co-infections with multiple SARS-CoV-2 lineages in equatorial Guinea

    Get PDF
    COVID-19 disease caused by SARS-CoV-2 represents an ongoing global public health emergency. Rapid identification of emergence, evolution, and spread of SARS-CoV-2 variants of concern (VOC) would enable timely and tailored responses by public health decision-making bodies. Yet, global disparities in current SARS-CoV-2 genomic surveillance activities reveal serious geographical gaps. Here, we discuss the experiences and lessons learned from the SARS-CoV-2 monitoring and surveillance program at the Public Health Laboratory on Bioko Island, Equatorial Guinea that was implemented as part of the national COVID-19 response and monitoring activities. We report how three distinct SARS-CoV-2 variants have dominated the epidemiological situation in Equatorial Guinea since March 2020. In addition, a case of co-infection of two SARS-CoV-2 VOC, Beta and Delta, in a clinically asymptomatic and fully COVID-19 vaccinated man living in Equatorial Guinea is presented. To our knowledge, this is the first report of a person co-infected with Beta and Delta VOC globally. Rapid identification of co-infections is relevant since these might provide an opportunity for genetic recombination resulting in emergence of novel SARS-CoV-2 lineages with enhanced transmission or immune evasion potential
    corecore