13,997 research outputs found
Distribution of Faraday Rotation Measure in Jets from Active Galactic Nuclei II. Prediction from our Sweeping Magnetic Twist Model for the Wiggled Parts of AGN Jets and Tails
Distributions of Faraday rotation measure (FRM) and the projected magnetic
field derived by a 3-dimensional simulation of MHD jets are investigated based
on our "sweeping magnetic twist model". FRM and Stokes parameters were
calculated to be compared with radio observations of large scale wiggled AGN
jets on kpc scales. We propose that the FRM distribution can be used to discuss
the 3-dimensional structure of magnetic field around jets and the validity of
existing theoretical models, together with the projected magnetic field derived
from Stokes parameters. In the previous paper, we investigated the basic
straight part of AGN jets by using the result of a 2-dimensional axisymmetric
simulation. The derived FRM distribution has a general tendency to have a
gradient across the jet axis, which is due to the toroidal component of the
magnetic field generated by the rotation of the accretion disk. In this paper,
we consider the wiggled structure of the AGN jets by using the result of a
3-dimensional simulation. Our numerical results show that the distributions of
FRM and the projected magnetic field have a clear correlation with the large
scale structure of the jet itself, namely, 3-dimensional helix. Distributions,
seeing the jet from a certain direction, show a good matching with those in a
part of 3C449 jet. This suggests that the jet has a helical structure and that
the magnetic field (especially the toroidal component) plays an important role
in the dynamics of the wiggle formation because it is due to a current-driven
helical kink instability in our model.Comment: Accepted for publication in Ap
Hyper- and suspended-accretion states of rotating black holes and the durations of gamma-ray bursts
We analyze the temporal evolution of accretion onto rotating black holes
subject to large-scale magnetic torques. Wind torques alone drive a disk
towards collapse in a finite time , where is the
initial free-fall time and is the ratio of kinetic-to-poloidal
magnetic energy. Additional spin-up torques from a rapidly rotating black hole
can arrest the disk's inflow. We associate short/long gamma-ray bursts with
hyperaccretion/suspended-accretion onto slowly/rapidly spinning black holes.
This model predicts afterglow emission from short bursts, and may be tested by
HETE-II.Comment: accepted for publication in the ApJ
Formation and observation of a quasi-two-dimensional electron liquid in epitaxially stabilized SrLaTiO thin films
We report the formation and observation of an electron liquid in
SrLaTiO, the quasi-two-dimensional counterpart of SrTiO,
through reactive molecular-beam epitaxy and {\it in situ} angle-resolved
photoemission spectroscopy. The lowest lying states are found to be comprised
of Ti 3 orbitals, analogous to the LaAlO/SrTiO interface and
exhibit unusually broad features characterized by quantized energy levels and a
reduced Luttinger volume. Using model calculations, we explain these
characteristics through an interplay of disorder and electron-phonon coupling
acting co-operatively at similar energy scales, which provides a possible
mechanism for explaining the low free carrier concentrations observed at
various oxide heterostructures such as the LaAlO/SrTiO interface
Magneto-Centrifugal Launching of Jets from Accretion Disks. II: Inner Disk-Driven Winds
We follow numerically the time evolution of axisymmetric outflows driven
magneto-centrifugally from the inner portion of accretion disks, from their
launching surface to large, observable distances. Special attention is paid to
the collimation of part of the outflow into a dense, narrow jet around the
rotation axis, after a steady state has been reached. For parameters typical of
T Tauri stars, we define a fiducial ``jet'' as outlined by the contour of
constant density at 10^4 cm^{-3}. We find that the jet, so defined, appears
nearly cylindrical well above the disk, in agreement with previous asymptotic
analyses. Closer to the equatorial plane, the density contour can either bulge
outwards or pinch inwards, depending on the conditions at the launching
surface, particularly the mass flux distribution. We find that even though a
dense, jet-like feature is always formed around the axis, there is no guarantee
that the high-density axial jet would dominate the more tenuous, wide-angle
part of the wind. Specifically, on the 100 AU scale, resolvable by HST and
ground-based adaptive optics for nearby T Tauri winds, the fraction of the wind
mass flux enclosed by the fiducial jet can vary substantially, again depending
on the launching conditions. We show two examples in which the fraction is ~20%
and ~45%. These dependences may provide a way to constrain the conditions at
the launching surface, which are poorly known at present.Comment: 11 pages, 6 figures. Accepted for publication in ApJ, scheduled for
vol. 595, October 1, 200
The Kuramoto model with distributed shear
We uncover a solvable generalization of the Kuramoto model in which shears
(or nonisochronicities) and natural frequencies are distributed and
statistically dependent. We show that the strength and sign of this dependence
greatly alter synchronization and yield qualitatively different phase diagrams.
The Ott-Antonsen ansatz allows us to obtain analytical results for a specific
family of joint distributions. We also derive, using linear stability analysis,
general formulae for the stability border of incoherence.Comment: 6 page
Interplay of Spin-Orbit Interactions, Dimensionality, and Octahedral Rotations in Semimetallic SrIrO
We employ reactive molecular-beam epitaxy to synthesize the metastable
perovskite SrIrO and utilize {\it in situ} angle-resolved photoemission
to reveal its electronic structure as an exotic narrow-band semimetal. We
discover remarkably narrow bands which originate from a confluence of strong
spin-orbit interactions, dimensionality, and both in- and out-of-plane IrO
octahedral rotations. The partial occupation of numerous bands with strongly
mixed orbital characters signals the breakdown of the single-band Mott picture
that characterizes its insulating two-dimensional counterpart,
SrIrO, illustrating the power of structure-property relations for
manipulating the subtle balance between spin-orbit interactions and
electron-electron interactions
Electronic structure of the cuprate superconducting and pseudogap phases from spectroscopic imaging STM
We survey the use of spectroscopic imaging scanning tunneling microscopy (SI-STM) to probe the electronic structure of underdoped cuprates. Two distinct classes of electronic states are observed in both the d-wave superconducting (dSC) and the pseudogap (PG) phases. The first class consists of the dispersive Bogoliubov quasiparticle excitations of a homogeneous d-wave superconductor, existing below a lower energy scale E = Delta(0). We find that the Bogoliubov quasiparticle interference (QPI) signatures of delocalized Cooper pairing are restricted to a k-space arc, which terminates near the lines connecting k = +/-(pi/a(0), 0) to k = +/-(0, pi/a(0)). This arc shrinks continuously with decreasing hole density such that Luttinger's theorem could be satisfied if it represents the front side of a hole-pocket that is bounded behind by the lines between k = +/-(pi/a(0), 0) and k = +/-(0, pi/a(0)). In both phases, the only broken symmetries detected for the vertical bar E vertical bar < Delta(0) states are those of a d-wave superconductor. The second class of states occurs proximate to the PG energy scale E = Delta(1). Here the non-dispersive electronic structure breaks the expected 90 degrees-rotational symmetry of electronic structure within each unit cell, at least down to 180 degrees-rotational symmetry. This electronic symmetry breaking was first detected as an electronic inequivalence at the two oxygen sites within each unit cell by using a measure of nematic (C-2) symmetry. Incommensurate non-dispersive conductance modulations, locally breaking both rotational and translational symmetries, coexist with this intra-unit-cell electronic symmetry breaking at E = Delta(1). Their characteristic wavevector Q is determined by the k-space points where Bogoliubov QPI terminates and therefore changes continuously with doping. The distinct broken electronic symmetry states (intra-unit-cell and finite Q) coexisting at E similar to Delta(1) are found to be indistinguishable in the dSC and PG phases. The next challenge for SI-STM studies is to determine the relationship of the E similar to Delta(1) broken symmetry electronic states with the PG phase, and with the E < Delta(0) states associated with Cooper pairing.Publisher PDFPeer reviewe
Self-Similar Magnetocentrifugal Disk Winds with Cylindrical Asymptotics
We construct a two-parameter family of models for self-collimated, radially
self-similar magnetized outflows from accretion disks. A flow at zero initial
poloidal speed leaves the surface of a rotating disk and is accelerated and
redirected toward the pole by helical magnetic fields threading the disk. At
large distances from the disk, the flow streamlines asymptote to wrap around
the surfaces of nested cylinders. In constrast to previous disk wind modeling,
we have explicitly implemented the cylindrical asymptotic boundary condition to
examine the consequences for flow dynamics. The solutions are characterized by
the logarithmic gradient of the magnetic field strength and the ratios between
the footpoint radius R_0 and asymptotic radius R_1 of streamlines; the Alfven
radius must be found as an eigenvalue. Cylindrical solutions require the
magnetic field to drop less steeply than 1/R. We find that the asymptotic
poloidal speed on any streamline is typically just a few tenths of the Kepler
speed at the corresponding disk footpoint. The asymptotic toroidal Alfven speed
is, however, a few times the footpoint Kepler speed. We discuss the
implications of the models for interpretations of observed optical jets and
molecular outflows from young stellar systems. We suggest that the difficulty
of achieving strong collimation in vector velocity simultaneously with a final
speed comparable to the disk rotation rate argues against isolated jets and in
favor of models with broader winds.Comment: 39 pages, Latex (uses AAS Latex macros), 6 eps figures, postscript
preprint with embedded figures available from
http://www.astro.umd.edu/~ostriker/professional/publications.html , to appear
in ApJ 9/1/9
- …