1,886 research outputs found

    Self-assembly mechanism in colloids: perspectives from Statistical Physics

    Full text link
    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model -- the Kern-Frenkel model -- describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperature-density plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.Comment: 14 pages, 7 figures, Special issue for the SigmaPhi2011 conferenc

    Synthesis of Single Phase Hg-1223 High Tc Superconducting Films With Multistep Electrolytic Process

    Full text link
    We report the multistep electrolytic process for the synthesis of high Tc single phase HgBa2Ca2Cu3O8+ (Hg-1223) superconducting films. The process includes : i) deposition of BaCaCu precursor alloy, ii) oxidation of BaCaCu films, iii) electrolytic intercalation of Hg in precursor BaCaCuO films and iv) electrochemical oxidation and annealing of Hg-intercalated BaCaCuO films to convert into Hg1Ba2Ca2Cu3O8+ (Hg-1223). Films were characterized by thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrolytic intercalation of Hg in BaCaCuO precursor is proved to be a novel alternative to high temperature-high pressure mercuration process. The films are single phase Hg-1223 with Tc = 121.5 K and Jc = 4.3 x 104 A/cm2.Comment: 17 Pages, 10 Figures. Submitted to Superconductor Science and Technolog

    Understanding uncertainty in temperature effects on vector-borne disease: A Bayesian approach

    Get PDF
    Extrinsic environmental factors influence the distribution and population dynamics of many organisms, including insects that are of concern for human health and agriculture. This is particularly true for vector-borne infectious diseases, like malaria, which is a major source of morbidity and mortality in humans. Understanding the mechanistic links between environment and population processes for these diseases is key to predicting the consequences of climate change on transmission and for developing effective interventions. An important measure of the intensity of disease transmission is the reproductive number R0R_0. However, understanding the mechanisms linking R0R_0 and temperature, an environmental factor driving disease risk, can be challenging because the data available for parameterization are often poor. To address this we show how a Bayesian approach can help identify critical uncertainties in components of R0R_0 and how this uncertainty is propagated into the estimate of R0R_0. Most notably, we find that different parameters dominate the uncertainty at different temperature regimes: bite rate from 15-25^\circ C; fecundity across all temperatures, but especially \sim25-32^\circ C; mortality from 20-30^\circ C; parasite development rate at \sim15-16^\circC and again at \sim33-35^\circC. Focusing empirical studies on these parameters and corresponding temperature ranges would be the most efficient way to improve estimates of R0R_0. While we focus on malaria, our methods apply to improving process-based models more generally, including epidemiological, physiological niche, and species distribution models.Comment: 27 pages, including 1 table and 3 figure

    New Chromogenic Spray Reagent for TLC Detection and Identification of Organophosphrous Insecticide Monocrotophos in Biological Material.

    Get PDF
    Monocrotophos is a member of Organophosphate insecticide. It is an important insecticide and has a diversified role in agriculture in INDIA. The increasing numbers of human poisoning cases were found to be occurred by the consumption of organophosphate insecticide monocrotophos. So in this paper, we represent a novel Thin Layer Chromatographic spray reagent for the detection and identification of Monocrotophos

    Solidification of Al alloys under electromagnetic pulses and characterization of the 3D microstructures under synchrotron x-ray tomography

    Get PDF
    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field

    Prediction of peptide and protein propensity for amyloid formation

    Get PDF
    Understanding which peptides and proteins have the potential to undergo amyloid formation and what driving forces are responsible for amyloid-like fiber formation and stabilization remains limited. This is mainly because proteins that can undergo structural changes, which lead to amyloid formation, are quite diverse and share no obvious sequence or structural homology, despite the structural similarity found in the fibrils. To address these issues, a novel approach based on recursive feature selection and feed-forward neural networks was undertaken to identify key features highly correlated with the self-assembly problem. This approach allowed the identification of seven physicochemical and biochemical properties of the amino acids highly associated with the self-assembly of peptides and proteins into amyloid-like fibrils (normalized frequency of β-sheet, normalized frequency of β-sheet from LG, weights for β-sheet at the window position of 1, isoelectric point, atom-based hydrophobic moment, helix termination parameter at position j+1 and ΔGº values for peptides extrapolated in 0 M urea). Moreover, these features enabled the development of a new predictor (available at http://cran.r-project.org/web/packages/appnn/index.html) capable of accurately and reliably predicting the amyloidogenic propensity from the polypeptide sequence alone with a prediction accuracy of 84.9 % against an external validation dataset of sequences with experimental in vitro, evidence of amyloid formation

    Thermal stresses in an infinite body with spherical cavity due to an arbitrary heat flux on its internal boundary surface

    Get PDF
    In this paper we consider an elastic infinite body with a spherical cavity subjected to a arbitrary heat flux on its internal boundary which is assumed to be traction free. The displacement and thermal stresses are obtained and results are compared using constant and time dependent heat flux. Laplace transform technique is used to obtain the temperature distribution. The mathematical model is obtained for copper material. The results are illustrated numerically and graphically
    corecore