8,960 research outputs found

    Irradiated asymmetric Friedmann branes

    Full text link
    We consider a Friedmann brane moving in a bulk impregnated by radiation. The setup is strongly asymmetric, with only one black hole in the bulk. The radiation emitted by this bulk black hole can be reflected, absorbed or transmitted through the brane. Radiation pressure accelerates the brane, behaving as dark energy. Absorption however generates a competing effect: the brane becomes heavier and gravitational attraction increases. We analyse the model numerically, assuming a total absorbtion on the brane for k=1. We conclude that due to the two competing effects, in this asymmetric scenario the Hawking radiation from the bulk black hole is not able to change the recollapsing fate of this brane-world universe. We show that for light branes and early times the radiation pressure is the dominant effect. In contrast, for heavy branes the self-gravity of the absorbed radiation is a much stronger effect. We find the critical value of the initial energy density for which these two effects roughly cancel each other.Comment: 27 pages, 12 figure

    Semi-transparent brane-worlds

    Full text link
    We study the evolution of a closed Friedmann brane perturbed by the Hawking radiation escaping a bulk black hole. The semi-transparent brane absorbes some of the infalling radiation, the rest being transmitted across the brane to the other bulk region. We characterize the cosmological evolution in terms of the transmission rate ϵ\epsilon. For small values of ϵ\epsilon a critical-like behaviour could be observed, when the acceleration due to radiation pressure and the deceleration induced by the increasing self-gravity of the brane roughly compensate each other, and cosmological evolution is approximately the same as without radiation. Lighter (heavier) branes than those with the critical energy density will recollapse slower (faster). This feature is obstructed at high values of ϵ\epsilon , where the overall effect of the radiation is to speed-up the recollapse. We determine the maximal value of the transmission rate for which the critical-like behaviour is observed. We also study the effect of transmission on the evolution of different source terms of the Friedmann equation. We conclude that among all semi-transparent branes the slowest recollapse occurs for light branes with total absorption.Comment: 15 pages, 8 figure

    Estimation of correlations and non-separability in quantum channels via unitarity benchmarking

    Get PDF
    The ability to transfer quantum information between systems is a fundamental component of quantum technologies and leads to correlations within the global quantum process. However, correlation structures in quantum channels are less studied than those in quantum states. Motivated by recent techniques in randomized benchmarking, we develop a range of results for efficient estimation of correlations within a bipartite quantum channel. We introduce subunitarity measures that are invariant under local changes of basis, generalize the unitarity of a channel, and allow for the analysis of quantum information exchange within channels. Using these, we show that unitarity is monogamous, and we provide an information-disturbance relation. We then define a notion of correlated unitarity that quantifies the correlations within a given channel. Crucially, we show that this measure is strictly bounded on the set of separable channels and therefore provides a witness of nonseparability. Finally, we describe how such measures for effective noise channels can be efficiently estimated within different randomized benchmarking protocols. We find that the correlated unitarity can be estimated in a SPAM-robust manner for any separable quantum channel, and we show that a benchmarking/tomography protocol with mid-circuit resets can reliably witness nonseparability for sufficiently small reset errors. The tools we develop provide information beyond that obtained via simultaneous randomized benchmarking and so could find application in the analysis of cross-talk errors in quantum devices

    A simple hourly wind power simulation for the South-West region of Western Australia using MERRA data

    Get PDF
    A simple simulator capable of generating synthetic hourly values of wind power was developed for the South West region of Western Australia. The global Modern Era Retrospective Analysis for Research and Applications (MERRA) atmospheric database was used to calibrate the simulation with wind speeds 50m above ground level. Analysis of the MERRA data indicated that the normalised residual of hourly wind speed had a double exponential distribution. A translated square-root transformation function yn=(√(1.96+ ye )−1.4)/0.302 was used to convert this to a normal-like distribution so that autoregressive (AR) time series analysis could be used. There was a significant dependency in this time series on the last three hours, so a third order AR model was used to generate hourly 50m wind speed residuals. The MERRA daily average 50m wind speed was found to have a Weibull-like distribution, so a square root conversion was used on the data to obtain a normal distribution. The time series for this distribution was found to have a significant dependency on the values for the last two days, so a second order AR model was also used in the simulation to generate synthetic time series values for the square root of the daily average wind speed. Seasonal, daily, diurnal, and hourly components were added to generate synthetic time series values of total 50m wind speed. To scale this wind speed to turbine hub height, a time varying wind shear factor model was created and calibrated using measured data at a coastal and an inland site. Standard wind turbine power curves were modified to produce an estimate of wind farm power output from the hub-height wind speed. Comparison with measured grid supervisory control and data acquisition (SCADA) data indicated that the simulation generated conservative power output values. The simulation was compared to two other models: a Weibull distribution model, and an AR model with normally distributed residuals. The statistical fit with the SCADA data was found to be closer than these two models. Spatial correlation using only the MERRA data was found to be higher than the SCADA data, indicating that there is still a further source of variability to be accounted for. Hence the simulation spatial correlation was calibrated to previously reported findings, which were similar to the SCADA data

    A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia

    Get PDF
    An interactive web tool was created to simulate 100% renewable electricity supply scenarios for the South-West Interconnected System (SWIS) in the south-west of Western Australia. The SWIS is isolated from other grids and currently has no available hydropower. Hence it makes a good case study of how supply and demand might be balanced on an hour-by-hour basis and grid stability maintained without the benefit of energy import/export or pumped hydroelectric storage. The tool included regional models for wind and solar power, so that hypothetical power stations were not confined to sites with existing wind farms or solar power stations, or sites with measurements of wind speed and solar radiation. A generic model for solar thermal storage and simple models for energy efficiency, distributed battery storage and power to gas storage were also developed. Due to the urgency of climate change mitigation a rapid construction schedule of completion by 2030, rather than the more common target of 2050, was set. A scenario with high wind generation, and scenarios with varying levels of solar power, wind power, distributed battery storage, energy efficiency improvements and power to gas systems were considered. The battery storage system and PV arrays were configured to provide synthetic inertia to maintain grid stability (with a small loss in capacity for each), and existing synchronous generators were kept spinning with no fuel input, adding a small increase to the electrical load demand. The level of synthetic inertia provided by battery storage was estimated for each scenario. The results indicated that a balanced mix of solar PV, solar thermal, efficiency, and storage were the most feasible to be built on a rapid time scale. The required capacity and build rate of the generation and storage systems would be reduced if energy efficiency improvements were implemented on a more rapid schedule compared to the current global improvement rate. The scenario with very high levels of wind power (∼80% generation) were found to be capable of meeting SWIS reliability criteria if very large amounts of distributed storage or some high capacity seasonal reserve generation system such as power to gas were present. High levels of battery storage capacity and efficiency improvement could be as effective as a power to gas system. It was confirmed that all scenarios provided the same or greater levels of inertia than presently provided by conventional generators. This tool showed that it is possible to examine renewable energy scenarios for regional electricity networks without high computing power

    Status of the Whipple Observatory Cerenkov air shower imaging telescope array

    Get PDF
    Recently the power of the Cerenkov imaging technique in Very High Energy gamma-ray astronomy was demonstrated by the detection of the Crab nebula at high statistical significance. In order to further develop this technique to allow the detection of weaker or more distant sources a second 10 m class reflector was constructed about 120 m from the original instrument. The addition of the second reflector will allow both a reduction in the energy threshold and an improvement in the rejection of the hadronic background. The design and construction of the second reflector, Gamma Ray Astrophysics New Imaging TElescope (GRANITE) is described
    corecore