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Abstract

A simple simulator capable of generating synthetic hourly values of wind power was developed for the South West region of Western
Australia. The global Modern Era Retrospective Analysis for Research and Applications (MERRA) atmospheric database was used to
calibrate the simulation with wind speeds 50m above ground level. Analysis of the MERRA data indicated that the normalised residual
of  hourly  wind  speed  had  a  double  exponential  distribution.  A  translated  square-root  transformation  function

yn=(√(1.96+ ye )−1.4)/0.302  was used to convert this to a normal-like distribution so that autoregressive (AR) time
series analysis could be used. There was a significant dependency in this time series on the last three hours, so a third order AR model
was used to generate hourly 50m wind speed residuals. The MERRA daily average 50m wind speed was found to have a Weibull-like
distribution, so a square root conversion was used on the data to obtain a normal distribution. The time series for this distribution was
found to have a significant dependency on the values for the last two days, so a second order AR model was also used in the simulation
to generate synthetic  time series  values  for the square root of  the  daily  average wind speed.  Seasonal,  daily,  diurnal,  and hourly
components were added to generate synthetic time series values of total 50m wind speed. To scale this wind speed to turbine hub
height, a time varying wind shear factor model was created and calibrated using measured data at a coastal and an inland site. Standard
wind turbine power curves were modified to produce an estimate of  wind farm power output  from the hub-height wind speed.
Comparison with  measured grid  supervisory control  and data  acquisition  (SCADA) data indicated that  the  simulation generated
conservative power output values. The simulation was compared to two other models: a Weibull distribution model, and an AR model
with normally distributed residuals. The statistical fit with the SCADA data was found to be closer than these two models. Spatial
correlation using only the MERRA data was found to be higher than the SCADA data, indicating that there is still a further source of
variability to be accounted for. Hence the simulation spatial correlation was calibrated to previously reported findings, which were
similar to the SCADA data.
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1. Introduction

With the increasing focus on low emission power generation systems to mitigate global warming and the
successful  operation  of  several  wind  farms  in  the  South  West  region  of  Western  Australia  (SWWA),  it
becomes worthwhile to consider the potential for expansion of wind power generation in this region. The
SWWA is characterised by a Mediterranean climate [1], which is dominated by the eastward passage of high
pressure sub tropical anti cyclonic cells. Mainly in winter, low pressure systems from the south cross the
state every seven to ten days. Hence there are distinct differences in the seasonal wind speed variation at
different places within SWWA. Frequently, there is a strong diurnal sea/land breeze along the coastline [2],
more often in the summer months. This sea breeze can also penetrate as far inland as Kalgoorlie [3], which is
about 350km from the nearest coast. 

The wind speed at any site can be represented as the sum of several components operating at different
temporal scales: seasonal, daily, diurnal, dependent and random. The seasonal component arises from the
cyclical variation in the prevailing atmospheric systems as the earth orbits the sun. The daily component
arises from the passage of weather systems across a region with typical durations from 2 to 8 days [ 4]. The
diurnal component arises from the sea/land breeze system caused by temperature differences between the
land  and  ocean.  The  dependent  component  arises  because  atmospheric  phenomena  can  be  persistent,
resulting in a relationship between the wind speed at a particular time to the wind speed at previous times.
Finally, most physical processes contain a random fluctuation component and wind speed is no different.

For a model to adequately represent the wind power generation potential at any one place in the SWWA, it is
necessary to capture the variability at each temporal scale [5]. It will also be necessary to capture the spatial
differences  in  these variabilities across the whole region of the SWWA. There have been several  simple
models that generate synthetic time series values of wind speed at one or more sites (eg. [6], [7]). These
models attempt to mimic the observed statistical nature of the wind speed. There are also detailed models of
wind speed at multiple sites or across a region that use meteorological physics, and tend to require much
more computing power [8].  This study will  focus on the development of a statistical model designed to
operate across the SWWA region.

The two parameter Weibull distribution has been the most widely used simple statistical representation of
overall wind speed behaviour [8]. The probability density function for this distribution is given by:
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Where v is the wind speed (m/s), f(v) is the probability density function, k is the shape parameter, and λ is
the scale parameter.  However,  Carta  et  al. [9]  also reviewed other probability density functions used to
represent  wind  speed  frequencies,  and  concluded  that  although  the  Weibull  distribution  has  some
advantages over other distributions,  it  cannot adequately represent many of the wind speed probability
density functions that might be encountered in the real world. Gunturu and Schlosser [10] found that use of
the Weibull distribution could lead to both over and under estimations of the wind power resource available.

Auto  Regressive  Moving Average (ARMA) models  [11]  have also  been widely  applied to the statistical
representation and prediction of many kinds of time series data (for example [12], [13] and [14]) as well as
wind speeds.  ARMA models are a combination of Auto Regressive (AR) models, and moving average (MA)
models, where the wind-speed value at time t is represented as the sum of a linear combination of wind
speed values  at  previous  times  and the  linear  combination  of  a  series  of  random values.  Purely  Auto
Regressive models use only the random value at the present time:

y (t)=∑
k=1

p

φk y (t−k )+ρ r (t) (2)

Where y(t) is the wind speed residual at time mark t, y(t-k) is the wind speed residual at timemark t-k, and
r(t) is  a  series  of  uncorrelated  white  noise  error  values  which  is  identically  distributed  with  a  normal
frequency distribution,  zero mean,  and standard deviation of one.  y(t) is  multiplied by the wind speed
standard deviation and then added to the mean wind speed to get  a wind speed value.  φk are the AR
parameters, and σ is the random noise parameter. The value of ρ is adjusted depending on the value of the
AR parameters so that the standard deviation of y(t) remains at one. The AR order p is the maximum value
of k with a non-zero value of φk. This is commonly written as an AR(p) model. ARMA models can capture
the temporal dependency inherent in wind speed time series,  while using a simple Weibull distribution
cannot. However, Papaefthymiou and Klockl [15] asserted that the frequency distribution (equivalent to the
probability density function or PDF) of ARMA models rarely match the measured data, which can lead to
under or over estimation of wind power. 

Wind speed behaviour can also vary over several  temporal  scales,  such as seasonal,  daily,  diurnal,  and
hourly. Seasonal variation is commonly modelled using one or more sinusoidal cycles (eg, [8] and [16]).
Daily average wind speeds vary from the seasonal average and can have a skewed distribution [17]. Weibull,
log-normal,  modified normal and modified exponential  distributions have been used to  represent  these
distributions (eg [17], [18], [19]). Carlin and Haslett [20] proposed the use of a "squared normal" distribution
to simply model Weibull-like distributions, based on Western Australian wind data. Daily wind speeds have
also been found to have an autoregressive dependency (eg [21], [22], [23]). 

A common way of modelling diurnal trends has been to calculate the average measured wind speed at every
hour of the day for each month or season (eg [8]).  Fixed cyclic  functions have also been used (eg [19]).
However these approaches don't explicitly catch the variation in peak daily wind speed magnitude and time
that occurs throughout each month or season. ARMA models and high order AR models have also been
developed  that  model  diurnal  variation  (eg  [6],  [24]).  Suomalainen  et  al. [23]  concluded  that  these
approaches were not sufficiently realistic and developed a model that identified day types defined by the
time of day that the peak wind speed occurs, and defining a diurnal pattern for each day type.
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After the seasonal, daily, and diurnal components of wind speed have been removed, what is left is the de-
trended  hourly  wind  speed.  Similarly  to  the  daily  wind  speed,  the  value  at  a  particular  time  has  a
dependency on the values at previous times, and ARMA models have been commonly used to model this
effect.

However, the above form of ARMA equation has been found to be generally suitable for use only if the time
series data and the error values are normally distributed. If the data is not normally distributed, then the
choice of distribution for the random error values needed to produce the same distribution as the data is not
clear [25]. For example, Ward and Boland [16] found that de-trended wind speeds at sites in South Australia
had a double exponential distribution (also called a Laplace distribution). But Damsleth and El-Shaarawi [26]
found that even the simplest AR model (of order 1) would not necessarily generate a time series with a
double exponential distribution, even if the random variable was given a double-exponential distribution.
Lawrance and Lewis  [25]  suggested an alternate  form of auto-regressive  equation,  but  with impractical
restrictions on the allowable values of the auto-regressive coefficients.

A possible solution is to convert the de-trended wind speed time series values into a normal distribution
using a data transformation function. Mach et al. [27] tested a number of transformations on different types
of data. If the data is found to have an exponential distribution, then the authors recommended a power
transformation to convert the data to a normal distribution. Although a double exponential distribution is
symmetric about the mean, unlike a standard exponential distribution, this might point the way to a suitable
transformation function. If the data is found to have a Weibull-like distribution (such as daily wind speeds),
then Mach et al. [27] recommended the use of a Box-Cox or power law transformation to convert to a normal
distribution. Widger [28] used the square-root normal distribution to model wind speeds, suggesting that
taking the square-root of the data (power law 1/2) may effectively convert a Weibull-like distributed wind
speed  time  series  into  a  normal-like  distributed  series.  Carlin  and  Haslett  [20]  used  a  square-root
transformation  function  on  Western  Australian  wind  data,  and  Brown  et  al. [29]  used  a  square-root
transformation function on data from the Pacific Northwest region of North America. 

For an interactive hourly wind speed simulation, limiting the numerical complexity is important. However
the simple Weibull model will be insufficient, as it does not account for persistence at this time scale. An
ARMA model or some other model that accounts for persistence must be used. If a site has a significant
diurnal component, then this must also be accounted for. This study found wind speed residuals that were
not  normally  distributed.  It  was  shown that  using  a  model  with  normally  distributed  residuals  led  to
significantly different, and less representative, statistical behaviour of the resulting wind power time series.

Several wind farms,  each using a different wind turbine, are now often present on large scale electrical
power grids. Hence once a representative time series of wind speeds at a reference height above ground has
been generated, two further steps must be taken: scaling the wind speed to the hub height of a particular
turbine, and then converting the scaled wind speed to an electrical power output.
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The horizontal  wind speed at  different  heights  above ground often have different  values.  This  effect  is
commonly called wind shear. There have been two equations commonly used to characterise the wind shear.
The first is the logarithmic relationship: 

v2
v1

=

ln(
h2
zo

)

ln(
h1
zo

)

(3)

Where v1 is the wind speed at height h1, v2 is the wind speed at height h2, and zo is the roughness length. This
relationship is  based on the physical  aspects of  atmospheric meteorological  behaviour [30].  The simpler
power law approximation is given by:

v2
v1

≈(
h2
h1

)
α

(4)

Where v1 is the wind speed at height h1, v2 is the wind speed at height h2, and α is the wind shear exponent,
often set to 1/7 [24]. The logarithmic relationship implies that the wind shear at any one site does not change
with time, and is  based on the assumption that the atmosphere is  in a neutrally stable condition where
vertical  air  movement is  neither encouraged or resisted [10].  In wind power studies,  this assumption is
commonly justified by the idea that when horizontal wind speeds become high enough to start generating
power,  mixing  will  ensure  the  atmosphere  becomes  neutrally  stable  [31].  Thus  inaccuracies  due  to  the
atmosphere being in a different state are more likely to occur at low wind speeds which will  have little
impact on the prediction of generated power. However, both Smith et al. [32] and Rareshide et al. [33] found
that this is not always the case, especially in inland areas, and there might be significant diurnal and seasonal
variation in wind shear factor at high wind speeds. Smith  et al. [32] found that wind shear was generally
higher at night and lower during the day, when it might even be negative. 

The specific power per unit area, P (W/m2),  in wind flowing past a wind turbine is a function of air density
σair and the cube of wind-speed v:

P=
1
2
σ air v

3 W/m2
(5)

In practice,  there is  an upper  limit  to  the  fraction of this  power that  can be harvested,  and a common
approach to transforming wind speed into power output is to use a wind turbine power curve [8], which is a
non-linear  transformation function (Fig.  1).  In  part  of  the  middle  region of  the  curve,  power  output  is
proportional to the air density [10], hence an implicit assumption when using wind power curves is that the
air density vertical profile at the turbine operational site is similar to the profile where the turbine was tested.
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Fig. 1. Typical wind turbine and wind farm power curve.

Holttinen [34] reported that the wind power factor curve for an individual turbine must be modified if the
wind power output from a whole wind farm, constructed using the same turbines,  is  required.  This  is
probably  due  to  variations  in  wind  speed  hitting  different  turbines  within  the  wind  farm.  Generally
Holttinen [34] used a gentler full power transition slope and shut down slope with a decreased shut-down
wind speed (Fig. 1). 

Because weather systems and hence wind patterns can extend over a wide area, wind farms sited close to
each other are likely to have a significant correlation in wind speed and power output over time, but the
correlation will decrease as the distance separating wind farms increases [35]. Kavasseri and Nagarajan [36]
speculated that there would be less spatial correlation over shorter time scales because of local differences in
topography and atmospheric behaviour, and more correlation over longer time scales due to global and
regional weather system seasonal effects. Haslett and Raftery [24] examined sites in Ireland and found a
decaying exponential  relationship for  the  correlation between hourly  wind speeds  at  two sites  and the
distance  between sites,  with  the  exception  that  sites  very  close  together  but  not  coincident  can  have a
correlation significantly less than one. Carlin and Haslett [20] reported decreasing wind speed correlation
with distance for sites in Western Australia.

A regional SWWA wind power simulation model should take this phenomenon into account. Correia and
Ferreira de Jesus [37] developed a first order vector AR model with user specified spatial correlation between
several sites, and Gibescu et al. [38] used a decaying exponential relationship to model the spatial correlation
between wind speeds at different sites. 

In this study, a simulation was developed for the purpose of modelling wind power generation for any site
in  the  SWWA.  Synthetic  wind  speeds  were  generated  using  square-root  transformations  of  a  normal
distribution and AR models. Historical 50 metre wind speed data was used to calibrate the simulation at
each temporal scale: seasonal, daily, diurnal, and hourly dependent, with a random fluctuation component
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also  added.  Spatial  correlation was  introduced by creating distance  weighted semi-dependencies  in  the
random numbers used to generate the daily and diurnal components of wind speed.

A spatially and temporally dependent wind shear conversion factor model was developed so that wind
speed at different turbine hub-heights could be estimated from these 50m wind speeds. Measured wind data
at  two sites was used to calibrate the wind shear conversion factor  model.  Finally,  synthetic wind farm
power output data was generated from the hub-height wind speed using modified wind turbine power
curves.  The  simulation  wind  power  output  was  compared  to  measured  supervisory  control  and  data
acquisition (SCADA) wind farm power output data at 6 existing wind farm sites. Grasmere and Albany were
considered to be separate, though adjacent, wind farms because different wind turbines are used at each site.
The fit of the seasonal averages, and the daily, diurnal and hourly frequency distributions (equivalent to the
probability density function or PDF) between the simulation and the SCADA data was compared, and it was
shown that using a Weibull model, or even an auto regressive model with normally distributed residuals
was not sufficient to represent the statistical behaviour of the measured wind power output. 

2. Method

To obtain hourly wind speeds near the hub-heights commonly used in modern wind farms, the Modern-Era
Retrospective  Analysis  for  Research and Applications (MERRA) database  [39]  was  accessed.   A grid of
hourly wind speeds at  50 metres above the surface of South Western Australia was obtained from this
database. The grid contains 330 nodes (15 x 22) with a spacing of 2/3° in longitude (approximately 62.5 km),
and 1/2° in latitude (approximately 56 km). The South West corner of the grid is at 112° east, 36° south, and
the North East corner is  at  126° east,  29° south.  106 of these nodes which are over land or close to the
coastline were used to develop the simulation, with most concentrated near the coast-line (Fig. 2). 
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Fig. 2. MERRA nodes used to simulate wind speed in the South-West region of Western Australia.

The wind speeds were divided into 4 components for analysis: seasonal, daily, diurnal, and hourly. For all
components, the distance from the coast of the wind farm was an important parameter. In a process similar
to Laslett et al. [40], a shape map of the Western Australian Coastline was constructed from the GEODATA
COAST 100K 2004 data package published by Geoscience Australia [41]. This data set is based on a 1:100,000
scale map sheet. The shape map consists of a vector map of the coastline and state border in longitude and
latitude  coordinates.  It  does  not  include  any  of  the  islands  off  the  coast  of  Western  Australia  that  are
included in the data package. A global simplification algorithm [42] was used to simplify the map down to a
500 vertex coastline map. 

The yearly average MERRA 50m wind speed varies across the SWWA with an average of 6.7 m/s and SD of
2.6 m/s. Two modes of seasonal variation were recognised in the monthly average MERRA wind speeds (For
examples, see Fig.  3). The first mode has a maximum during the summer months and a minimum during
winter, and is predominant at mid latitudes. The second mode is significant at southern latitudes. Both are
attenuated at sites further inland.

8

112 114 116 118 120 122 124 126 128 130
-36

-34

-32

-30

-28

-26

-24

-22

-20

-18

-16

-14

-12

longitude

la
tit
u
d
e



Fig. 3. Seasonal MERRA wind speeds near Walkaway and Albany wind farms.

To simulate seasonal wind speed at a particular site, the yearly average wind speed Vyav was estimated to be
the linear distance weighted average of the four yearly average wind speeds from the surrounding MERRA
grid square. The seasonal wind speed at any particular day of the year was then calculated from Vyav using a
weighted combination of each seasonal mode:

V season=V yav (1+kslat 1V mode1(DOY )+kslat 2V mode2(DOY )) (6)

where DOY is  the  day of  the  year,  Vseason is  the  seasonal  wind speed at  DOY,  kslat1 and kslat2 are  the
weighting coefficients for each mode, and Vmode1 and Vmode2  are the magnitudes of each mode at DOY. kslat1

and kslat2 were found to have a dependency on latitude and distance from the coast. Vmode1 and Vmode2 were
represented using piecewise linear functions. See Appendix A for the precise parameterisations. 

The distribution of MERRA daily average 50m wind speeds was found to have a similar shape to a translated
Weibull distribution (Fig.  4). Similarly to Carlin and Haslett [20], the square-root residual of the MERRA
daily average wind speed was found to have a normal-like distribution (Fig. 5). The square-root residual was
obtained  by  subtracting  the  mean  of  the  square  root  wind  speeds  and then  dividing  by  the  standard
deviation of the square root wind speeds. The standard deviation σd was found to have both a spatial and
seasonal dependency. See Appendix A for parameterisations.
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Fig.  4. Normalised  frequency  distribution  of  MERRA daily  average  50m  wind  speed  compared  to  a
translated Weibull distribution. Horizontal axis bin width is 0.1 ms -1, which is close to the value of 0.093 ms-1

suggested by the Freedman-Diaconis rule [43].
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Fig.  5. Normalised frequency distribution of MERRA daily average 50m wind speed square-root residual
compared to normal distribution.  Horizontal axis bin width is  0.05, which is  close  to the value of 0.048
suggested by the Freedman-Diaconis rule [43].

 

Examination of the auto-regression and partial auto-regression coefficients of the square-root residuals at
each MERRA node (for example Fig. 6 and Fig. 7) indicated a possible auto-regressive (AR) signature with
dependency of order two. The dependency could also possibly be a second order moving average MA(2) or
combined ARMA(1,1) model. For the residual at each node, the least squares method [44] and numerical
maximum likelihood estimation was used to calculate the root mean square error (RMSE) for ARMA models
with coefficients up to order (5,4) (for example Table  1).  These indicated that the pure AR models gave
sightly lower RMSE values. For increasing AR order, the RMSE initially decreased and then substantially
levelled off after order 2. To confirm that an AR order of two was necessary and sufficient to capture most of
the  dependency  within  the  time  series,  the  Bayesian  Information  Criterion  (BIC)  [45]  was  used  in  the
following form:

BIC=n loge (RMSE
2
)+( p+q+1) logen (7)

Where n is the number of data points (1827), p is the AR order and q is the MA order. BIC was calculated and
ranked in ascending order for each ARMA(p,q) model,  0  ≤ p  ≤ 5 and 0  ≤ q  ≤ 4, at each node (for example
Table 2). The model with the lowest BIC was ARMA(2,0) or AR(2). The value of the AR(2) coefficients were
found to be fairly consistent across all of the MERRA nodes, so the average coefficient values were used in
the simulation.
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Fig.  6. Example auto-correlation of the MERRA daily average wind speed square-root residual at a single
node. Dashed lines indicate 95% significance levels for a population value of zero.
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Fig.  7. Example partial auto-correlation of the MERRA daily average wind speed square-root residual at a
single node. Dashed lines indicate 95% significance levels for a population value of zero.

Table 1
Example Root Mean Square Error (RMSE) for different orders of Auto Regressive Moving Average (ARMA) models of the MERRA daily
average wind speed square root residual at a single MERRA node.

MA order
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AR order 0 1 2 3 4

0 0.99993 0.87811 0.87811 0.87811 0.87811

1 0.87673 0.86891 0.86887 0.86887 0.86887

2 0.86863 0.86882 0.86870 0.86867 0.86864

3 0.86884 0.86887 0.86885 0.86884 0.86884

4 0.86829 0.86831 0.86830 0.86829 0.86829

5 0.86818 0.86819  0.86819 0.86819 0.86819

The Auto-Regressive (AR) order increases with each row downward, and the Moving Average (MA) order increases to the right.

Table 2
Example Bayesian Information Criterion (BIC) and ranking in ascending order for different orders of Auto Regressive Moving Average 
(ARMA) models of the MERRA daily average wind speed square root residual at a single MERRA node. 

AR order
MA order
0 1 2 3 4

0 7.25
30

-459.93
20

452.42
24

-444.91
27

-437.40
29

1 -465.69
15

-490.90
2

-483.59
5

-476.07
8

-468.57
14

2 -492.09
1

-483.78
3

-476.79
7

-469.39
12

-462.01
18

3 -483.69
4

-476.06
9

-468.61
13

-461.17
19

-453.67
23

4 -478.51
6

-470.89
11

-463.46
17

-455.96
22

-448.46
26

5 -471.46
10

 -463.90
16

 -456.38 
21    

-448.86
25

-441.35
28

The Auto-Regressive (AR) order increases with each row downward, and the Moving Average (MA) order increases to the right. The 
ARMA(2,0), or AR(2), model had the lowest BIC (rank 1).

To remove the seasonal and daily components, the 24 hour trend was found for each hourly MERRA wind
speed value by calculating the average wind speed from 12 hours before to 11 hours after that hour. This
trend was then subtracted to obtain a de-trended hourly MERRA wind speed dataset. Similarly to Skidmore
and Tatarko [46], the simulation used a single sinusoid to represent the diurnal wind speed: 
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vdiurnal=tmag cos(2π (t−t peak )

t period )  tpeak - 0.75tperiod <  t  < tpeak + 0.25tperiod (8)

Where t is the time of day (hours), tpeak is the time of day (hours) when the peak wind speed occurs within
the de-trended dataset, tperiod is timespan between the beginning and the end of the sinusoid (hours), and tmag

is the magnitude of the sinusoid (ms-1). For each day, the difference between maximum and minimum wind
speed values (in the de-trended MERRA dataset), and the hour when these occurred was used to formulate
the magnitude, period, and peak hour of the sinusoid for the simulation. The average peak hour was found
to occur later as distance from the coast increased (Fig.  8).  This indicated that the peak sea-breeze front
travels inland initially at about 33 kmhr-1 (9.17 ms-1), which is consistent with the average offshore land-
breeze propagation speed of 32.4  ± 14.4 kmhr-1 (9 ± 4 ms-1) reported by Gille et al. [47].

Fig. 8. Variation in summer sea-breeze peak hour with distance from the coast-line.
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Fig.  9. Normalised frequency distribution of MERRA 50m wind speed residual and transformed residual
compared to normal distribution.  Horizontal axis bin width is  0.02, which is  close  to the value of 0.016
suggested by the Freedman-Diaconis rule [43].

The  sea-breeze  magnitude,  period,  and  peak  hour  variabilities  were  also  found  to  have  a  seasonal
dependence as well as dependence on distance from the coast-line. The diurnal component was subtracted
from the de-trended hourly wind speed to obtain the hourly MERRA wind speed residual y. y was then
normalised by subtracting the overall mean and dividing by the overall standard deviation, σ. σ was found
to have a spatial dependence. Hill et al. [8] found the de-trended wind speed distribution for sites in the UK
to follow a normal distribution. However in this study the normalised residual y was found to roughly
follow a double exponential distribution with a slight skew, rather than a normal distribution (Fig. 9). Ward
and Boland [16] also found a double exponential distribution for wind data in South Australia.

As pointed out by Lawrance and Lewis [25] and Damsleth and El-Shaarawi [26], there is a tendency for
autoregressive equations to produce time series with normal distributions, even if the distribution of the
random term is not normal. Hence a data transformation function was required to convert the distribution of
y to a normal-like distribution. Because a double exponential distribution is symmetric about the mean, a
simple symmetric form of square-root conversion was used on the data:

yn(t)=
(1.4−√1.96− y (t))

0.302
y (t )<0

yn(t)=
(√ y ( t )+1.96−1.4)

0.302
y (t )≥0

(9)
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Where yn(t) is the transformed hourly MERRA wind speed residual. The transformed distribution is more
normal-like (Fig. 9). The auto-correlation coefficients and partial auto-correlation coefficients of yn(t) for each
node indicated that there was an auto-regressive (AR) dependency of order three within the yn(t) time series
(For example Fig. 10 and Fig. 11). However there remained possibly significant low levels of dependence at
lags greater than three. In a similar procedure to the daily average wind speed square root residuals, The
least squares method and numerical maximum likelihood estimation was used to calculate the root mean
square error (RMSE) for ARMA models with coefficients up to order (5,4) for each residual (for example
Table 3). These indicated that the pure AR models gave sightly lower RMSE values. For increasing AR order,
the RMSE initially decreased and then substantially levelled off after order three. To confirm which AR order
was  necessary  and  sufficient  to  capture  most  of  the  dependency  within  the  time  series,  the  Bayesian
Information Criterion (BIC) was calculated and ranked in ascending order for each ARMA(p,q) model, 0 ≤ p
≤ 5 and 0  ≤ q  ≤ 4, at  each node (for example Table  4).  For hourly data, n = 43824. The results were not
definitive as models with the lowest BIC were a mixture of ARMA(3,0) and ARMA(4,0).  ARMA(3,0),  or
AR(3), models were chosen as the difference in RMSE values between the two models was small (typically <
1%). The AR(3) coefficient values were found to have a spatial dependency. See Appendix A for the full
parameterisation of the spatial dependencies.

Fig. 10. Example auto-correlation of the MERRA hourly wind speed transformed residual at a single node.
95% significance level for a population value of zero is ~0.01.
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Fig. 11. Example partial auto-correlation of the MERRA hourly wind speed transformed residual at a single
node. 95% significance level for a population value of zero is ~0.01.

Table 3
Example Root Mean Square Error (RMSE) between different Auto Regressive Moving Average (ARMA) models and the MERRA hourly 
wind speed transformed residual at a single node.

AR order
MA order
0 1 2 3 4

0 0.99501 0.59737 0.59737 0.59737 0.59737

1 0.45858 0.39830 0.39830 0.39830 0.39830

2 0.39308 0.39035 0.39018 0.39010 0.39010

3 0.38983 0.38982 0.38982 0.38982 0.38982

4 0.38981 0.38982 0.38987 0.38984 0.38983

5 0.38981 0.38983 0.38985 0.38983 0.38986

The Auto-Regressive (AR) order increases with each row downward, and the Moving Average (MA) order increases to the right.

Table 4
Example Bayesian Information Criterion (BIC) and ranking in ascending order for different orders of Auto Regressive Moving Average 
(ARMA) models of the MERRA hourly wind speed transformed residual at a single node.

AR order
MA order
0 1 2 3 4

0 -428.19
30

-45136.44
26

-45125.75
27

-45115.06
28

-45104.38
29
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1 -68311.50
25

-80651.62
21

-80640.93
22

-80630.25
23

-80619.34
24

2 -81807.56
20

-82409.56
19

-82436.04
17

-82442.40
16

-82435.33
18

3 -82524.81
1

-82517.95
3

-82507.11
5

-82496.83
7

-82485.26
10

4 -82518.49
2

-82505.93
6

-82485.36
9

-82481.62
11

-82472.63
13

5 -82507.70
 4

-82494.41
8

-82477.41
12

-82471.13
14

-82453.59
15

The Auto-Regressive (AR) order increases with each row downward, and the Moving Average (MA) order increases to the right.  In this 
case, the ARMA(3,0), or AR(3), model had the lowest BIC (rank 1).

It was now possible to start generating synthetic hourly wind speed values. Firstly, the synthetic normally
distributed hourly residual yns(t) was generated using a standard AR(3) equation:

yns(t)=φ1 yns(t−1)+φ2 yns( t−2)+φ3 yns(t−3)+ρr (t) (10)

Where r(t) is a normally distributed random variable and ρ is set so that the standard deviation of yns(t) is
one. φ1, φ2 and φ3 are the AR(3) coefficients (see Appendix A). The initial values of yns(t-1), yns(t-2) and yns(t-3)
were set to standard normally distributed random values.  The computational benefit of using the square-
root  data transformation in  equation (9)  is  that  generation of synthetic  wind speed residuals  requires a
simple reverse transformation involving a calculation of the square:

ys(t)=1.96−(1.4−0.302 yns(t))
2 yns(t)<0

ys(t)=(1.4+0.302 yns( t))
2
−1.96 yns(t )≥0

(11)

Where ys(t) is the synthetic hourly wind speed residual for wind farm w.  The distribution of ys(t) was similar
to the MERRA wind speed residual distribution, but without the slight skew (Fig. 12).
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Fig.  12. Normalised frequency distribution of MERRA and simulation hourly 50m wind-speed residual.
Horizontal axis bin width is 0.02, which is close to the value of 0.016  suggested by the Freedman-Diaconis
rule [43].

The synthetic average daily wind speed residual yds(t) was generated using a standard AR(2) equation:

yds(t)=φd1 yds(t−1)+φd2 yds( t−2)+ρd r d(t) (12)

Where  ρd was set to  a value such that the standard deviation of yds(t)  is  1.  rd(t)  is  a standard normally
distributed random value. The initial values of yds(t-1), and yds(t-2) were set to standard normally distributed
random values. Synthetic daily average wind speeds vds(t) were generated by squaring yds and using Vseason as
the average:

vds(t )=(√ V season+σd y ds(t ))
2
−σd

2 (13)

The σd
2 term is present to make the mean of vds(t) be Vseason. The hourly synthetic wind speed vs could now be

assembled as the sum of the daily average component, the diurnal component, and the hourly dependent
component:

v s(t)=vds(t)+vdiurnal (t)+σy s(t) (14)
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See Appendix A for the full wind speed simulation algorithm. vs is the wind speed 50 metres above the
ground, but as the hub height of most modern wind turbines is higher than 50 metres, v s must be scaled to
the hub-height wind speed vhh(t). The simpler power law estimation for wind shear (equation (4)) was used
because no extra information about surface friction is required. MERRA data was only available for one
height, so measured data at different heights from two sites, one coastal and one inland, was used.  This data
indicated that the wind shear is more pronounced in inland areas, and varies with hour of the day, with
wind  shear  exponent  α  being  usually  larger  at  night  (Fig.  13).  There  was  also  a  seasonal  variation
superimposed on this, with α being even greater at night during the winter months.

Fig. 13. Change in average wind shear factor with time of day for a coastal site and an inland site.

Hourly wind farm power output was estimated from the hub height wind speed vhh using wind turbine
power curves modified according to the findings of Holttinen [34] (Fig. 1). The parameters for wind turbines
used in the SWWA are given in Table A1 of Appendix A. Since the SWWA has a generally low elevation, it
was assumed that there was no significant difference in air density between the sites used to measure the
turbine technical  specifications,  and the actual  air  density encountered by the turbines used in Western
Australia. 

The model presented in this study, called here the 'transformed residual' model, was run for a period of 5
years, from 2009 to 2013.  The simulation was started by calculating the spatial and seasonal parameters for a
chosen day of the year, then generating power output values hour-by-hour. Daily and seasonal parameters
were recalculated at the beginning of each day. The simulated wind farm power output was compared to
actual wind farm power output data for the SWIS grid, measured using the Supervisory Control And Data
Acquisition (SCADA) system. Six of the largest wind farms connected to the SWIS grid were chosen for
comparison. All of these wind farms have capacities greater than 10MW.  

The parameters used to generate the model synthetic seasonal wind speed V season have a dependence on
latitude and distance from the coast (see equation (A7)), so there is already an implicit correlation in the
seasonal wind speed between two nearby sites. Correlation between the daily and diurnal components of
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wind speed for different wind sites was introduced using a matrix of distance weighted combinations of the
random numbers used to generate these values. The weighting factor between two sites was given an inverse
relationship to distance apart (equations (A11) to (A15)), so that distant sites would be less correlated than
nearer sites. The hourly autoregressive and random components of wind speed at each site were assumed to
be uncorrelated. 

The MERRA 50m wind speeds were also scaled to hub-height and converted to wind power values. It was
found that the distance correlation between these MERRA wind power values was greater than the SCADA
data distance correlation (Fig. 14), suggesting that there is an extra source of spatial variability other than the
wind speed. Therefore the model was instead calibrated to the distance correlation values reported in Carlin
and Haslett [20] for wind measurements at several sites in Western Australia, which correspond more closely
to the SCADA correlation.

Fig. 14. Average correlation with inter wind farm distance for wind farm power output for the SWWA.

To assess the simulation, the results from two other models were also compared. The first model, called here
the 'Weibull' model, used the Weibull distribution to generate hourly time series wind speed data with no
dependency on previous values of wind speed. The seasonal wind speed V season  was used to calculate the
scale parameter λ, and the shape parameter k was estimated using the maximum likelihood method from the
hourly wind speed data. The second model was the same as the transformed residual model, except that
normally distributed residuals were used, with no data transformation. This model was called the 'normal
residual'  model.  The average of 10 simulation runs of all  three models were compared to the measured
SCADA wind power output data. Two statistical measures used to compare the models with the measured
data were the Root Mean Square Error (RMSE), and the Mean Bias Error (MBE).The RMSE is a measure of
the magnitude of the difference between individual data points in each data set. The sign of the difference is
ignored. The MBE is a measure of the average difference between individual data points in each data set, or
whether the model generated data set is biased higher or lower compared to the measured data on the
whole. Here the sign of the difference is not ignored. Generally, a model with a lower RMSE than another fits
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the data more closely. In this study a model with a negative MBE might be considered more favourably than
a model with a similar but positive MBE because under predicting wind power generation on the whole is
more desirable than over predicting. Representing RMSE and MBE as a percentage gives an idea of how
significant the error is compared to the average value of the measured data. See Appendix B for definitions
of these measures. 

3. Results

The three simulation generated overall average Capacity Factor (CF) values for the six largest wind farms
connected  to  the  SWIS  (Albany  and  Grasmere  are  considered  separate  wind  farms)  were  generally
comparable to the measured SCADA values (Table 5), with differences less than 12%, except for Walkaway
wind farm, where the three models underestimated the yearly average CF by 9-16%. The normal residual
model  slightly  overestimated  the  yearly  average  CF.  The  Weibull  and  transformed  residual  models
underestimated the overall average CF. These two models generated similar CF values for 4 out of the 6
wind farms. For Grasmere and Albany wind farms, the transformed residual model generated slightly lower
values than the Weibull model. However the magnitude of the differences between these two models and the
SCADA overall CF were similar, indicating that the models were similarly close. 

Table 5
SCADA and simulated overall average capacity factor (CF) for six wind farms within the SWWA using three simulation models: the 
Weibull model, the normal residual model, and the transformed residual model.

Name Capacity (MW) Distance from Coast 
(km)

SCADA CF Weibull model 
CF

Normal 
residual 
model CF

Transformed 
residual CF

Grasmere 13.8 0.67 0.33 0.33 0.36 0.32

Albany 21.6 0.67 0.32 0.33 0.36 0.32

Mumbida 55 14.6 0.39 0.38 0.41 0.38

Emu Downs 79.2 23.6 0.35 0.33 0.36 0.33

Walkaway 89.1 15.8 0.43 0.36 0.39 0.36

Collgar 206 255 0.37 0.34 0.36 0.34

Model values are the average of 10 simulation runs.

The errors between the simulation and SCADA yearly average capacity factors (Table 6) indicated that the
Weibull model was slightly closer to the measured SCADA data. The greatest RMSE error for the Weibull
and transformed residual model occurred at the Walkaway wind farm, and for the normal residual model,
the greatest error was at the Albany windfarm. These results indicated that actual power generation at the
Walkaway wind farm is significantly greater than predicted by all the models, which are based on MERRA
data.  Local  effects  may be  increasing  wind speeds at  this  site.  Comparing  the  SCADA and simulation
monthly average capacity factors, the Weibull model achieved a lower RMSE than the other two models.
However, the normalised frequency distribution of average daily capacity factors (Fig. 15) indicated that the
Weibull model generated a significantly different distribution to the measured SCADA data, with CF values
concentrated on intermediate values between 0.2 and 0.5. Although less pronounced, the normal residual
model  also  generated  a  distribution  more  concentrated  on  intermediate  values  of  CF.  The  transformed
residual model generated a distribution closest to the SCADA distribution, with a slight skew towards lower
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CF values,  reflecting the slight conservative bias of this model. These discrepancies were reflected in the
error values (Table 6). The normal and transformed residual models achieved much lower RMSE values than
the Weibull model. The transformed residual model achieved the lowest RMSE values overall, although the
value for Mumbida wind farm was comparable to the normal residual model, and the value for Walkaway
was significantly higher. The Weibull and normal residual models also generated a significantly different
diurnal peak hour distribution (Fig. 16). Peak hour is the hour of the day when CF (and hence wind power
output) is at a maximum. The transformed residual model achieved lower RMSE values than the Weibull or
normal residual models, except for Emu Downs wind farm, where the values were comparable. The hourly
CF normalised frequency distribution (Fig. 17) of the Weibull model fitted the SCADA distribution slightly
better than the other two models. The transformed residual model again exhibited a slight skew towards
lower CF values.

Table 6
Errors in the yearly and monthly average capacity factor (CF) estimation, daily average CF frequency distribution, diurnal peak hour 
distribution and hourly average CF frequency distribution of three simulation models compared to measured SCADA wind power data.

Time scale Measure Weibull model Normal residual 
model

Transformed 
residual model

Yearly RMSE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

1.74
9.77
4.59
7.71
15.11
9.0
8.0

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

10.4
19.2
3.9
8.4
9.6
5.6
9.5

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

5.3
9.6
5.4
9.7
16.1
10.4
9.4

MBE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

1.2
8.6
-4.6
-4.1
-14.5
-8.1
-3.6

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

9.8
18.2
3.9
4.0
-7.6
-1.3
4.5

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

-1.1
6.1
-5.4
-4.2
-15.2
-8.2
-4.6

Monthly RMSE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

15.4
20.4
12.5
16.9
18.9
17.3
16.9

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

25.5
30.4
31.1
22.1
21.2
22.1
25.4

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

30.0
30.3
26.8
23.4
24.0
24.1
26.4

MBE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

1.3
8.1
1.6
-4.1
-14.4
-5.2
-2.1

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

9.5
16.6
12.2
4.0
-8.0
1.5
6.0

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

-2.5
5.0
5.7
-4.0
-14.8
-4.1
-2.4

Daily frequency 
distribution

RMSE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

143
147
122
126
129
136
134

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

32.5
40.7
35.1
25.5
28.8
25.1
31.3

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

25.2
17.0
35.9
23.5
37.8
22.3
26.9

Diurnal peak 
hour distribution

RMSE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar

47.1
47.0
58.6
49.5
58.0
107

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar

38.0
39.9
55.3
48.5
52.0
77.1

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar

25.9
18.5
43.8
50.6
42.0
20.5
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Average 61.2 Average 51.8 Average 33.5

Hourly frequency 
distribution

RMSE(%) Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

27.2
15.6
19.7
48.9
27.8
35.2
29.0

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

79.0
65.1
43.2
26.6
48.1
78.6
56.8

Grasmere
Albany
Mumbida
Emu Downs
Walkaway
Collgar
Average

18.4
18.9
30.8
56.3
36.6
27.2
31.3

RMSE and MBE values are given as a percentage of the average SCADA capacity factor or average SCADA CF frequency. Values for 
individual wind farms are the average of 10 simulation runs.
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Fig. 15. Normalised frequency distribution of average daily capacity factors. Three models (Weibull, normal
residual, and transformed residual) are compared to measured SCADA wind power output data. Horizontal
axis bin width is 0.025, which is close to the value of 0.032, suggested by the Freedman-Diaconis rule [43].
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Fig. 16. Diurnal capacity factor (CF) peak hour distribution. Peak hour is the hour of the day when CF (and
hence wind power output)  is  at  a maximum. Three models (Weibull,  normal residual,  and transformed
residual) are compared to measured SCADA wind power output data. The 25 th hour is the same data point
as the 1st hour and is provided for continuity.
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Fig.  17. Normalised  frequency  distribution  of  average  hourly  capacity  factors.  Three  models  (Weibull,
normal residual, and transformed residual) are compared to measured SCADA wind power output data.
Horizontal axis bin width is 0.01, which is close to the value of 0.016, suggested by the Freedman-Diaconis
rule [43].
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4. Discussion and Conclusions

Even though the Weibull model generated yearly capacity factors slightly closer to the measured SCADA 
data than the transformed residual model, both the Weibull and normal residual models generated 
significantly different daily average capacity factor and diurnal peak hour distributions to the measured 
data, and hence would generate unrealistic statistical behaviour if they were used to simulate existing or 
hypothetical wind power systems in the SWWA. The transformed residual model generated daily average 
capacity factors and diurnal peak hours with a much closer distribution to the measured data and 
demonstrated the necessity of characterising the wind speed residual properly, and not blindly assuming 
that it has a normal distribution.

Wind  power  is  a  distributed  resource  that  is  increasing  in  use  world-wide.  Therefore  simulating  the
operation of large scale electrical grids with significant levels of wind power is becoming more important. To
do this it is necessary to build regional scale wind power simulations that can account for spatial, seasonal
and hour-by-hour variation. The results from this study indicated that using MERRA data as the basis of
such a wide area simulation is a viable method. The MERRA dataset is freely available and covers the whole
surface of the world, including many regions that would have no access to suitable hub-height wind speed
data. 

The wind farm capacity factors were found to have a greater  distance correlation when estimated from
MERRA data, than when calculated directly from the measured SCADA data. Hence there may be more
variability in air density, wind shear factor, wind farm wide wind speed variability, or another factor than
accounted for here. It is  important to confirm this finding in future studies over other regions,  as wind
variability can have a significant effect on the operation of a large scale electrical grid. Simulations based on
MERRA data can be built for any site or region in the world, but they must incorporate a means for correctly
setting the distance correlation between wind farm sites.

The simulation in this instance was conservative. Although measured data was used to calibrate the wind
shear factor, similar simulations could be developed for regions with no available measured data. Setting the
wind shear exponent to zero would generate even more conservative synthetic power output data, but still
usable because the 50m height above ground level is within the range of most modern wind turbine hub
heights.

The frequency distribution of the AR-based simulation capacity factor was similar to the measured data
capacity factor, due to the use of the novel data transformation functions, which also have applicability to
other sites that have an exponential wind speed residual distribution. Matching the measured and simulated
wind power frequency distribution is important for detailed estimation of wind power potential. 

Similarly to Ward et al. [16], it was found that wind sites closer to the coast tended to have diurnal output
peaks in the afternoon, earlier than those wind sites further inland which peak later in the evening. This
implies that a mix of coastal and inland wind farm sites is beneficial for avoiding large peaks and lulls in
wind  power  generation  and  maintaining  a  supply  of  wind  power  that  is  consistent  with  the  peak  in
electricity demand.
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Appendix A. Detailed Wind Simulation Model

The following algorithm for generating synthetic hourly wind farm output power at any location within the
SWWA was used. This algorithm is split into 4 sections depending on how often computation is required.
Latitude and longitude values are in  degrees,  but  all  sine and cosine terms assume the argument is  in
radians, and the cos-1 term produces a value in radians. The simulation can be started on any day of the year,
and at any hour of the day, by setting the day of the year variable DOY and hour of the day variable hr to the
desired values. DOY can range from 1 to 365 (or 1 to 366 for modelling leap years), and hr from 0 to 23. The
initial values of daily and hourly residuals ydw,0  , ydw,1,  ynsw,0, ynsw,1 and ynsw,2 are set to standard normally
distributed random values.  For a simulation of Nwf wind farms, to enable distance correlation to be set, at
each hour the wind power for each wind farm w = 1,Nwf is calculated together. 

The first section must be computed once before the simulation begins:

(1.1) Calculate wind shear seasonal coefficients. For month m, m = 1 to 12, calculate:

csm=cos (
π
6

(m−6)) (A1)

30



(1.2) Set daily auto regression coefficients

φd 1=0.523237

φd 2=−0.160552

ρd=0.88102

(A2)

The second section must be computed once per wind farm w, w = 1,Nwf, before the simulation begins:

(2.1) From the latitude and longitude of the location of wind farm w (lonw, latw), use Euclidean geometry and
the coastline shape map coordinate data to calculate the distance from the coast cdistw (in km). The coastline
shape map consists of 500 vertices in longitude and latitude coordinates (loni,lati), i = 1 to 500. The first vertex
is the start of the coastline and is where the coast crosses the Northern Territory border. The coastline is
approximated by a set of line segments, each defined by a pair of adjacent vertices (lon i,lati) (loni+1,lati+1), i = 1
to 499. First calculate the horizontal and vertical position coordinates for wind farm w.

xw=111.195(lonw−129)cos(
π
180

lat w)   km

yw=111.195 latw   km

(A3)

Set dmin = 108. For each line segment i = 1 to 499, calculate

x i=111. 195((loni+ loni+1)2
−129)cos( π

180

( lat i+lat i+1)

2 )   km

y i=111 .195
(lat i+lat i+1)

2
  km

d=(xw−x i)
2
+( yw− y i)

2  km2

if (d<dmin)dmin=d

(A4)

Calculate
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cdistw=√(dmin ) km (A5)

(2.2) If the grid of MERRA yearly average wind speeds have locations [latmerra i,lonmerraj], where latmerrai

is the latitude (degrees) and lonmerraj is the longitude (degrees) of node i,j, i = 1 to Nlat, j = 1 to Nlon, then let
the matrix of MERRA year average wind speeds be denoted by Vyav ij. For wind farm w, if latw is the latitude,
and lonw is the longitude, then find latmerrain, the latitude of the nearest MERRA node with latitude greater
than latw, and find lonmerrajn, the longitude of the nearest MERRA node with longitude greater than lonw,
then calculate the average yearly wind speed  vyavw:

fi lat=
(lat w−latmerrain)

(latmerrain−latmerra in-1)

fi lon=
( lonw−lonmerra jn)

(lonmerra jn−lonmerrajn-1)

vi1=(1−filat)vyav in-1,jn-1+ filat vyavin,jn-1

vi2=(1−filat) vyavin-1,jn+ filat vyav in,jn

vyavw=(1−fi lon) vi1+ filonvi2

(A6)

(2.3) For each wind farm w, calculate the seasonal variation coefficients, the diurnal and wind shear distance
coefficients, and the diurnal latitude and peak time coefficients:
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k 0w=
0.0395956 (latw+34)

1+0.00794402(lat w+34)
3+

latw+34

2(50+cdistw)

k 1w=
0.0804696

(1+0.741463(latw+35.1))(1+
cdistw
200

)

fcw=
1

1+(
cdistw
75

)
2

fdistw=
(100+cdistw)

(200+cdistw)

fshearw=
cdistw

(50+cdistw)

awsf w ,m=0.005(1−csm)(1−fshear w) for month m = 1,12

bwsf w=0.056+0.0625 fshear w

cwsf w=0.01+0.1 fshearw

dwsf w=0.005+0.08125 fshearw

flatw=
1

36+latw

asbw=16.5+
32.5cdist w

(700+3 cdistw)

bsbw=1.75−
6.25cdistw

(125+5cdistw)

af w=0.72+0.21 fdistw

bf w=0.394 fdistw−0.08 flatw−0.572

cf w=1.75+0.13 fdistw−0.5 flatw

df w=0.261−1.16 fdistw

(A7)

(2.4) For each wind farm w, calculate the hourly and daily auto regression coefficients:
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farlat=0.05+0.4
(36+ latw)

(37+ latw)

fardist=
1

1+
cdist w
100

φw, 1=farlat (1.28+0.17 fardist )

φw, 2=farlat (−0.55−0.27 fardist )

φw, 3=farlat (0.095+0.07 fardist )

ρw=0.45−
0.051

(1+
cdistw
50

)

σ w=(1−
0.15

(1+0.01cdistw )
)(1−

0.15
(36+ latw)

)

σdbw=0.43 (0.91+
0.09

(1+0.01cdistw)
)(0.67+

1.32
(39+latw)

)

(A8)

(2.5)  For  each  wind farm w,  and month m,  m =  1  to  12,  calculate  dawn and dusk times.  Let  mdoy =
[ 15,44,75,105,136,166,197,228,258,289,319,350 ]
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DOY=mdoy [m ]

b=0.017453(DOY−81)

eot=
(9.87 sin(2b)−7.53cos (b)−1.5 sin(b))

60
            

ds=−0.40928 sin(0.0172142(284+DOY ))

noon=12.275−eot−
(lonw−115.87)

15

lr=0.017453lat w

hsd=3.8197186 cos−1(
−sin (lr)sin (ds)
cos (lr)cos(ds)

)

if (hsd<0)hsd=−hsd

dawn=noon−hsd

dusk=noon+hsd

justafterdawnw ,m=dawn+2                  

afterdawnw ,m=dawn+4            

beforeduskw ,m=dusk−1

nightw ,m=dusk+3

wsfbasew,m=0.11+0.0625 fshearw+0.02csm  

(A9)

(2.6) For each wind farm w, that uses wind turbine type wt, modify reference velocities for the individual
turbine to represent overall wind farm operation. If another wind farm uses the same type of turbine, this
step does not have to be repeated.
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vcwt=vcowt−0.5

vrwt=vrowt+5

vf wt=0.4 vcwt+0.6vrowt

vswt=vsowt−3

cwt=
0.5

(vrwt−vf wt )
3

bwt=
0.5

(vf wt
3
−vcwt

3
)

awt=−bwt vcwt

(A10)

Where parameters with suffix o refer to the original individual wind turbine parameters. vcowt is the cut-in
wind speed, vrowt is the reference wind speed (the speed at which the turbine reaches full power output),
and vsowt is the shut-down wind speed. These parameters can be obtained from the wind turbine technical
specifications. Values for some turbines which are used in the simulation are given below in Table A1. awt,
bwt, and cwt are constants associated with the partial power section of the turbine power curve.

Table A.1
Wind turbine power curve parameters.

Turbine Capacity (MW) vco (m/s) vro (m/s) vso (m/s) hub-height (m)

ENERCON-E40 0.6 2.5 12 28 46

ENERCON-E48 0.8 2.5 14 28 50

ENERCON-E66 1.8 2.5 15 28 65

ENERCON-E70 2.3 2.5 15 28 64

ENERCON-E126 7.5 2.5 17 28 135

VESTAS-V82 1.65 3.5 12.5 20 78

VESTAS-V90 1.856 4 12 25 80

VESTAS-V112 3 3 12 25 119

GE 2.5-100 2.5 3 12.5 25 75

REPOWER 3.4M104 3.4 3.5 13.5 25 78

ENERCON-E53 0.8 2.5 14 28 73

ENERCON-E40 0.5 2.5 12 25 44.2

(2.7) For each wind farm w, calculate distance correlation weighting coefficients fdc. Estimate distw1w2, the
distance between wind farm w1 and wind farm w2 (km), and fdcw1w2, the distance weighting factor between
wind farm w1 and wind farm w2  for every possible pair of wind farms w1  and w2. For wind farms w1 = 1 to
Nwf - 1, and for wind farms w2 = w1+1 to Nwf:
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dx=111.195((lonw 1−129)cos (
π
180

latw 1)−(lonw 2−129)cos (
π
180

latw 2))

dy=111.195 (latw 1−latw 2)

distw1w 2=√dx2+dy2

d1=
distw 1w 2
60

d2=(
distw 1w 2
500

)
8

fdcw 1,w 2=
1

(1+d1)(1+d2)

fdcw 2,w 1=fdcw 1,w 2

fdcw 1,w 1=1

(A11)

For wind farms w = 1 to Nwf 

fdctot= ∑
w1=1,Nwf

fdcw ,w 1 (A12)

fdcw ,w 1=
fdcw ,w 1
fdctot

for w1 = 1 to Nwf (A13)

fdctotsq=
1

∑
w1=1,Nwf

fdcw ,w 1
2

for w1 = 1 to Nwf (A14)

fdcw ,w 1= fdcw ,w1 fdctotsq for w1 = 1 to Nwf (A15)

fdcw , Nwf+1
=fdctotsq (A16)

The third section must be calculated at the beginning of each day (hr = 0),  and at the beginning of the
simulation if hr does not start at 0.
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(3.1) Calculate the seasonal variation coefficient fseason, first seasonal mode maximum amplitude coastal
and inland components f0c and f0i, and the second seasonal mode maximum amplitude f1 (all same for every
wind farm). Let:

dom[13] = {0,31,59,90,120,151,181,212,243,273,304,334,366},

dmm[14] = {-15,15,44,75,105,136,166,197,228,258,289,319,350,380},

fsm[13] = { -1,-1,-1,-0.5,0,0.5,1,1,1,0.5,0,-0.5,-1 },

f0mi[14] = { 0.75,1.8,0.75,0.6,-1.0,-0.4,-0.5,-1.7,-1.7,0.4,0.5,1.4,0.75,1.8 },

f0mc[14] = { 1.2,1.5,0.5,0.7,-0.6,-0.7,-0.6,-0.7,-1.25,-0.3,0,0.6,1.2,1.5 }, and

f1m[14] = { -0.3,0,0.3,-0.25,-0.6,-0.75,0.5,0.12,0.25,1,-0.25,0.1,-0.3,0 },

If not at beginning of simulation, then increment day of year DOY by 1. From DOY, find the month m  (m =
1..12)  such that  dom[m-1]  <  DOY <= dom[m],  and the  mid-month number  mm (mm = 1..13)  such  that
dmm[mm-1] < DOY <= dmm[mm].

fseason=1+ fsm [m ]

f mm=
(doy−dmm[mm−1])

(dmm [mm ]−dmm [mm−1])

f 0 c= f 0mc[mm−1]+ f mm(f 0mc [mm]−f 0mc[mm−1])

f 0 i=f 0mi[mm−1]+ f mm( f 0mi[mm]−f 0mi [mm−1])

f 1=f 1m [mm−1]+ f mm( f 1m[mm]−f 1m [mm−1])

(A17)

(3.2) For each wind farm w, calculate the first seasonal mode maximum amplitude:

f 0w=fcw f 0c+(1−fcw) f 0 i (A18)

(3.3) For each wind farm w, calculate the seasonal wind speed:

Vseasonw=Vyavw(1+k 0w f 0w+k1w f 1) (A19)

At the beginning of the simulation only, set vdavw to Vseasonw.

(3.4) For each wind farm w, calculate the sea breeze peak time:
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tsbw=asbw+bsbw fseason

if (tsbw < 0) tsbw = 0

if (tsbw > 23) tsbw = 23

(A20)

(3.5) For each wind farm w, generate four normally distributed random numbers, rw,i:

rw ,i=
(z0.135−(1−z )0.135)

0.1975
i = 1 to 4, z uniformly distributed on (0,1) (A21)

(3.6) For each wind farm w, distance weight the random variables rdcw,i, i = 1 to 4:

rdcw ,i= ∑
q=1,N wf

fdcw , qr q,i  
(A22)

(3.7) For each wind farm w, calculate the average daily velocity. The previous daily autoregressive residual
calculations are moved one day back and today's daily residual ydw,0  is calculated.

ydw ,2= ydw ,1

ydw ,1= ydw ,0

ydw ,0=φd 1 ydw ,1+φd2 ydw ,2+ρd rdcw , 1

(A23)

Move previous daily average wind speed one day back, and apply reverse square root transformation

to ydw,0. 
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vdavlw=vdavw

σdw=(1+0.225 fseason)σdbw

vdavw=(√Vseasonw+σdw ydw ,0)
2
−σdw

2

if (vdavw>16.5)vdavw=16.5

if (vdavw<1)vdavw=1

(A24)

(3.8) For each wind farm w, calculate the diurnal component coefficients. The previous day's calculations are
moved one day back (a late peaking diurnal component from the previous day may still remain active into
the present day).

tpeakw ,0=tpeakw , 1−24

tperiodw ,0=tperiodw ,1

tfreqw ,0=tfreqw ,1

tstartw ,0= tstartw ,1−24

tstopw, 0=tstopw ,1−24

tmagw , 0=tmagw, 1

(A25)

(3.9) Calculate today's diurnal component peak time of day, tpeakw,1
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f pk=af w+bf w fseason

f pk2=cf w+df w fseason

tpeakw ,1=15−0.5( f pk 2−rdcw ,2) rdcw,2 < -fpk2

tpeakw ,1=7.5+0.5 fseason−3 (f pk−rdcw ,2) -fpk2 < rdcw,2 < -fpk

    if -fpk < rdcw,2 < fpk

      { tsbw=asbw+bsbw fseason

           if (tsbw < 0) tsbw = 0

           if (tsbw > 23) tsbw = 23 

        tpeakw ,1=tsbw+3 rdcw , 2 }

tpeakw ,1=7.5+0.5 fseason+3(rdcw, 2−f pk) fpk < rdcw,2 < fpk2

tpeakw ,1=15+0.5 (rdcw ,2−f pk 2) rdcw,2 > fpk2

while tpeakw,1 < 0  add 24 hours to tpeakw,1 

while tpeakw,1 >= 36  subtract 24 hours from tpeakw,1

(A26)

(3.10) Calculate this days diurnal component period tperiodw,1

tperiodw ,1=24+2 rdcw ,3 tpeakw,1 < 6

tperiodw ,1=16−fseason+(3−0.75 fseason)rdcw ,3  6 ≤ tpeakw,1 

if  tperiodw,1 < 6  tperiodw,1 = 6

if  tperiodw,1 > 36  tperiodw,1 = 36

(A27)

(3.11) Calculate this days diurnal component magnitude tmagw,1
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dt=tpeakw ,1−8.5

dv=vdavw−5+0.25 fseason

am=−0.825−0.66 fseason

bm=0.1485+0.033 fseason

cm=3.2959−0.21327 fseason−0.7755 /(1+0.5dt 2)

dm=0.275−0.1155 fseason+0.11vdavw

tmagw,1=(1−0.15 flatw (2−fseason ))(am+bm vdavw+cm/(1+0.15 dv2))+dm rdcw ,4

if (tmagw,1 < 0) tmagw , 1=0

if (tmagw,1 > vdavw) tmagw , 1=vdavw

if (tmagw,1 > 7) tmagw , 1=7

(A28)

(3.12)  Calculate  tstartw,1,  tstopw,1,  and tfreqw,1.  Make sure  today's  diurnal  component  doesn't  start  before
midnight (hr = 0).

if ( tpeakw , 1 < 12)  { tmagw , 1=−tmagw ,1 , tpeakw ,1=tpeakw ,1+
tperiodw ,1

2
 }

(A29)

tstartw ,1=tpeakw , 1−
3 tperiodw , 1

4

if ( tstartw ,1 < 0)  { tperiodw ,1=1.333tpeakw , 1 , tstartw ,1=0  }

(A30)

tstopw, 1=tpeakw ,1+
tperiodw ,1

4

tfreqw ,1=
2π

tperiodw ,1

(A31)

The fourth section must be calculated each hour for each wind farm:
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(4.1) for each wind farm w, calculate total hourly wind speed, where hr is the hour of the day. First generate
a normally distributed random number, then move the previous hourly autoregressive calculations one hour
back and calculate this hour's synthetic normally distributed residual ynsw,0:

 rh=
(z0.135−(1−z )0.135)

0.1975
z uniformly distributed on (0,1)

ynsw ,3= ynsw ,2

ynsw ,2= ynsw ,1

ynsw ,1= ynsw ,0

ynsw ,0=φw ,1 ynsw, 1+φw , 2 ynsw ,2+φw ,3 ynsw , 3+ ρwr h

(A32)

Apply reverse data transformation to calculate this hour's synthetic wind speed residual ysw:

ysw=1.96−(1.4−0.302 ynsw ,0)
2   ynsw,0 < 0

ysw=(1.4+0.302 ynsw ,0)
2
−1.96   ynsw,0 ≥ 0

(A33)

Calculate diurnal wind speed:

vdiurnalw=0

vdiurnalw=vdiurnalw+ tmagw , 0cos (tfreqw ,0(hr−tpeakw ,0)) tstartw,0 < hr < tstopw,0

vdiurnalw=vdiurnalw+ tmagw ,1 cos (tfreqw ,1(hr− tpeakw , 1)) tstartw,1 < hr < tstopw,1

(A34)

Calculate daily average wind speed trend:

vhmw=vdavlw+
hr (vdavw−vdavlw)

24
(A35)

Calculate total hourly wind speed:
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vw=vhmw+vdiurnalw+σw ysw

if (vw<0)vw=0
(A36)

(4.2) for each wind farm w, calculate wind shear factor and hub height wind speed. m is the number of the
current month.

if (hr< justafterdawnw,m) hr=hr+24

if (hr<beforeduskw ,m)

 { if (hr<afterdawnw ,m)  

      wsf=wsfbasew ,m+0.5(hr− justafterdawnw,m)(awsf w ,m(vw−5)−bwsf w)

   else 

     wsf=wsfbasew ,m+awsf w ,m(vw−5)−bwsf w   }

else

 { if (hr<nightw ,m)
wsf=wsfbasew,m+0.25 (hr−beforedusk w,m)(cwsf w+dwsf w (8−vw))  

     else 

  wsf=wsfbasew ,m+cwsf w+dwsf w(8−vw) }  

if (wsf <0)wsf=0

if (wsf >0.7)wsf=0.7

vhhw=vw (
hhwt
50

)
wsf

(A37)

Where hhwt is the hub height of turbine wt used by the wind farm, and vhhw is the hub-height wind speed of
wind farm w.

(4.3) Calculate wind farm power output. For each wind farm w, using wind turbine wt:
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if (vhhw≤vcwt )CF=0

else

 { if (vhhw≥vrwt)

    { if (vhhw>vswt)  

       { vd=vhhw−vswt

         if (vd≥6)CF=0            

         else

          if (vd≥3)

           CF=
(vd−6)2

18

          else

           CF=1−
vd2

18
 }         

      else CF=1  }

   else

    if (vhhw≤vf wt)CF=awt+bwt vhhw
3

    else

     { vd=vrwt−vhhw

       CF=1−cwt vd
3  }}

powerw=CF∗capacityw

(A38)

where capacityw is the full power capacity of wind farm w.

(4.4) Advance the hour of the day variable hr by 1. If hr ≥ 24, advance the day of year variable DOY by 1 and
set hr = 0. If DOY > 365 (or DOY > 366 if a leap year is being modelled), set DOY = 1.
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Appendix B. Formulation of statistical measures

The root mean square error (RMSE) is calculated using:

RMSE=
1
N √∑

i=1

N

(hm−hd )
2

where hd is the measured data value, hm is the model generated synthetic data value, and N is the number of
data  points.  RMSE can be  represented as  a percentage value by dividing by the  mean value of  h d  and
multiplying by 100. The mean bias error (MBE) is calculated using:

MBE=
1
N
∑
1

N

(hm−hd )

MBE can be represented as a percentage value by dividing by the mean value of hd  and multiplying by
100.The RMSE is a measure of the magnitude of the difference between individual data points in each data
set. The sign of the difference is ignored. The MBE is a measure of the average difference between individual
data points in each data set, or whether the model generated data set is biased higher or lower compared to
the measured data on the whole. Here the sign of the difference is not ignored. Generally, a model with a
lower RMSE than another fits the data more closely. In this study a model with a negative MBE might be
considered more favourably than a model with a similar but positive MBE because under predicting wind
power generation on the whole is more desirable than over predicting. Representing RMSE and MBE as a
percentage gives an idea of how significant the error is compared to the average value of the measured data.
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Appendix C. Nomenclature

α wind shear exponent kslat2 weighting coefficient for seasonal  mode 2

λ weibull scale parameter lati latitude of coast-line map vertex i (degrees)

σair air density (Kg/m3) loni longitude of coast-line map vertex i  (degrees)

ρ generic hourly wind speed residual random noise 
component standard deviation 

latw latitude of wind farm w (degrees)

ρd synthetic daily average wind speed residual random
noise component standard deviation

lonw longitude of wind farm w (degrees)

ρw hourly wind speed residual random noise component
standard deviation for wind farm w

latmerrai latitude of MERRA grid nodes i,j,  j = 1 to Nlon (deg)

σ generic  hourly  wind  speed  standard  deviation
coefficient

latmerrain latitude of nearest MERRA node with latitude greater than latw 

(deg)

σdbw base daily wind speed standard deviation coefficient
for wind farm w  (m1/2s-1/2)

lonmerraj longitude of MERRA grid nodes i,j,  i= 1 to Nlat(deg)

σdw seasonally  adjusted  daily  wind  speed  standard
deviation coefficient for wind farm w  (m1/2s-1/2)

lonmerrajn longitude of the nearest MERRA node with longitude greater 
than lonw (deg)

σw hourly wind speed standard deviation coefficient for
wind farm w  (ms-1)

lr latitude of wind farm w in radians (radians)

φd1 synthetic daily wind speed residual

first order auto-regression coefficient

MA moving average model

φd2 synthetic daily wind speed residual

second order auto-regression coefficient

MAPE mean absolute percent error

φk generic k-th order auto-regression parameter MBE mean bias error

φw,1 synthetic hourly wind speed residual first order auto-
regression coefficient for wind farm w

mdoy mid-month day of year array

φw,2 synthetic  hourly  wind speed residual  second order
auto-regression coefficient for wind farm w

nightw,m time of day at 3 hours after dusk for wind farm w during 
month m (hr)

φw,3 synthetic  hourly  wind  speed  residual  third  order
auto-regression coefficient for wind farm w

Nlat number of horizontal MERRA grid lines (22)

afw diurnal peak time coefficient for wind farm w Nlon number of vertical MERRA grid lines (15)

asbw diurnal peak time coefficient for wind farm w noon local time at which solar altitude is maximum (hr)

awt wind farm wide power curve parameter for turbine
type wt (m-2s2)

Nwf number of wind farms

afterdawnw,m time of day  at 4 hours after dawn for wind farm w 
during month m (hrs)

p autoregressive model order
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am diurnal  wind  magnitude  constant  component
coefficient

P specific power per unit area  (W/m2)

AR auto regressive model powerw power output for wind farm w (MW)

ARMA auto regressive moving average model q moving average model order

awsfw,m wind shear factor coefficient for wind farm w r generic normally distributed random variable

b day of year angle for equation of time (radians) rd generic normally distributed random variable for daily 
synthetic wind speed residual generation

bwt wind farm wide power curve parameter for turbine
type wt (m-3s3)

rw,i normally distributed random variables for wind farm w,  i = 1 
to 4

beforeduskw,m time of day at 1 hour before dusk for wind farm w 
during month m (hrs)

rdcw,i distance weighted combination random variables for wind 
farm w,  i = 1 to 4

bfw
diurnal peak time coefficient for wind farm w

rh standard normally distributed random variable for hourly 
synthetic wind speed residual generation

BIC Bayesian Information Criterion RMSE root mean square eror

bm diurnal  wind  magnitude  daily  wind  speed
component coefficient

t time of day (hr)

bsbw
diurnal peak time coefficient for wind farm w

tfreqw,0 frequency of yesterday's diurnal wind sinusoid for wind farm 
w (radians per hr)

bwsfw
wind shear factor coefficient for wind farm w

tfreqw,1 frequency of today's diurnal wind sinusoid for wind farm w 
(radians per hr)

cwt wind farm wide power curve parameter for turbine
type wt (m-3s3)

tmag generic magnitude of diurnal wind sinusoid (ms-1)

capacityw full power capacity for wind farm w (MW)
tmagw,0 magnitude of yesterday's diurnal wind sinusoid for wind farm 

w (ms-1)

cdistw distance inland  of wind farm w from the nearest part
of the coastline (km)

tmagw,1 magnitude of today's diurnal wind sinusoid for wind farm w 
(ms-1)

CF
capacity factor

tpeak generic time of day when peak wind speed occurs in de-
trended dataset (hr)

cfw
diurnal peak time coefficient for wind farm w

tpeakw,0 peak hour of yesterday's diurnal wind sinusoid for wind farm 
w (hr)

cm
diurnal wind magnitude peak component coefficient

tpeakw,1 peak hour of today's diurnal wind sinusoid for wind farm w 
(hr)

csm wind shear seasonal coefficient for month m tperiod generic timespan of diurnal wind sinusoid (hr)

cwsfw
wind shear factor coefficient for wind farm w

tperiodw,0 period of yesterday's diurnal wind sinusoid for wind farm w 
(hr)

d square of distance between wind farm w and coast-
line segment i (km2)

tperiodw,1 period of today's diurnal wind sinusoid for wind farm w (hr)

d1 distance factor 1 between two wind farms (km) tsbw sea breeze peak time of day base value for wind farm w (hr)
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d2 distance factor 2 between two wind farms (km8) tstartw,0 start time of day of yesterday's diurnal wind sinusoid for wind 
farm w (hr)

dmin square of distance inland from the nearest part of the
coastline (km2)

tstartw,1 start time of day of today's diurnal wind sinusoid for wind 
farm w (hr)

dawn sunrise local time (hr) tstopw,0 stop time of day of yesterday's diurnal wind sinusoid for wind 
farm w (hr)

dfw diurnal peak time coefficient for wind farm w tstopw,1 stop time of day of today's diurnal wind sinusoid for wind 
farm w (hr)

distw1w2 distance estimate between wind farm w1 and wind 
farm w2 (km)

v wind speed (m/s)

dm diurnal wind magnitude variation coefficient v1,v2 wind speed at heights h1,h2  (m/s)

dmm mid-month cumulative day of year array vcw,t wind farm wide cut-in wind speed for turbine type wt (ms-1)

dom end of month cumulative day of year array vcow,t single turbine cut-in wind speed for turbine type wt (ms-1)

DOY day of year Vdavw Daily average wind speed base value (ms-1)

ds solar declination angle (radians) Vdavlw Daily average wind speed base value from yesterday (ms-1)

dt diurnal wind magnitude peak hour factor Vdiurnal generic diurnal wind speed (ms-1)

dusk sunset local time (hr) Vdiurnalw diurnal wind speed for wind farm w (ms-1)

dx horizontal distance estimate between two wind farms
(km)

vds(t) synthetic daily average wind speed (ms-1)

dy vertical distance estimate between two wind farms 
(km)

vfw,t wind farm wide power curve level-off  threshold wind speed
for turbine type wt (ms-1)

dv diurnal wind magnitude daily wind speed factor vhhw hub height wind speed for wind farm w (ms-1)

dwsfw wind shear factor coefficient for wind farm w vhmw daily average wind speed trend (ms-1)

eot equation of time vi1 interpolated wind speed 1 (ms-1)

f probability density function (also frequency 
distribution) for wind as a function of wind speed

vi2 interpolated wind speed 2 (ms-1)

f0c coastal first seasonal mode maximum amplitude Vmode1 magnitude of seasonal mode 1

f0mc coastal first seasonal mode maximum amplitude by 
month array

Vmodee2 magnitude of seasonal mode 2

f0w first seasonal mode maximum amplitude for wind 
farm w

vrw,t wind farm wide reference wind speed for turbine type wt (ms-1)

f0i inland first seasonal mode maximum amplitude vrow,t single turbine reference wind speed for turbine type wt (ms-1)

f0mi inland first seasonal mode maximum amplitude by 
month array

vsw,t wind farm wide shut down wind speed for  turbine type wt
(ms-1)

f1 second seasonal mode maximum amplitude vs(t) synthetic hourly wind speed (ms-1)
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f1m second seasonal mode maximum amplitude by 
month array

Vseason generic seasonal wind speed (ms-1)

fardist AR parameter distance factor Vseasonw seasonal wind speed for wind farm w (ms-1)

farlat AR parameter latitude factor vsow,t single turbine shut down wind speed for turbine type wt (ms-1)

fdcw1,w2 distance correlation factor between wind farm w1 
and wind farm w2

Vyav yearly average wind speed (ms-1)

fdctot sum of raw distance correlation factors between wind
farm w and all other wind farms

Vyavij yearly average wind speed at MERRA node i,j i = 1 to N lat, j = 1
to Nlon (ms-1)

fdctotsq reciprocal of the sum of squares of the fractional 
distance correlation factors between wind farm w 
and all other wind farms

Vyavw estimate of yearly average wind speed at wind farm w (ms-1)

fdistw diurnal distance coefficient wsf wind shear factor

filat latitude interpolation factor wsfbasew,m base wind shear factor for wind farm w during month m

filon longitude interpolation factor xi horizontal position coordinate for coast-line map line segment i
(km)

flatw diurnal latitude coefficient ydw,0 daily average wind speed residual for wind farm w

fmm seasonal mode maximum amplitude linear 
interpolation coefficient

ydw,1 daily  average  wind  speed  residual  for  wind  farm  w  from
yesterday

fpk diurnal wind sinusoid peak hour distribution factor 1 ydw,2 daily average wind speed residual for wind farm w from two
days ago

fpk2 diurnal wind sinusoid peak hour distribution factor 2 yi vertical  position coordinate  for  coast-line map line segment i
(km)

fseason seasonal coefficient xw horizontal position coordinate for wind farm w (km)

fshearw wind shear distance coefficient yw vertical position coordinate for wind farm w (km)

fsm seasonal coefficient by month array y hourly wind speed residual

ft wind shear factor time coefficient yds synthetic daily average wind speed residual 

h1 height above ground (m) yn transformed hourly MERRA wind speed residual

h2 height above ground (m)  yns generic  synthetic  normally  distributed  hourly  wind  speed
residual

hhwt hub height for wind turbine wt (m) ynsw,0 synthetic normally distributed hourly wind speed residual for
wind farm w for present hour

hr hour of day ynsw,1 synthetic normally distributed hourly wind speed residual for
wind farm w for previous hour

hsd time between sunrise and noon, or noon and sunset 
(hrs)

ynsw,2 synthetic normally distributed hourly wind speed residual for
wind farm w for two hours before present
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justafterdawnw,m time of day of 2 hours after dawn for wind farm w 
during month m (hrs)

ys generic synthetic hourly wind speed residual

k weibull shape parameter ysw present hour synthetic wind speed residual for wind farm w 

k0w seasonal variation mode 0 coefficient z random variable uniformly distributed between 0 and 1

k1w seasonal variation mode 1 coefficient zo roughness length (m)

kslat1 weighting coefficient for seasonal mode 1
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