239 research outputs found
The Origin of Solar Activity in the Tachocline
Solar active regions, produced by the emergence of tubes of strong magnetic
field in the photosphere, are restricted to within 35 degrees of the solar
equator. The nature of the dynamo processes that create and renew these fields,
and are therefore responsible for solar magnetic phenomena, are not well
understood. We analyze the magneto-rotational stability of the solar tachocline
for general field geometry. This thin region of strong radial and latitudinal
differential rotation, between the radiative and convective zones, is unstable
at latitudes above 37 degrees, yet is stable closer to the equator. We propose
that small-scale magneto-rotational turbulence prevents coherent magnetic
dynamo action in the tachocline except in the vicinity of the equator, thus
explaining the latitudinal restriction of active regions. Tying the magnetic
dynamo to the tachocline elucidates the physical conditions and processes
relevant to solar magnetism.Comment: 10 pages, 1 figure, accepted for publication in ApJ
The Three-dimensional Evolution of Rising, Twisted Magnetic Flux Tubes in a Gravitationally Stratified Model Convection Zone
We present three-dimensional numerical simulations of the rise and
fragmentation of twisted, initially horizontal magnetic flux tubes which evolve
into emerging Omega-loops. The flux tubes rise buoyantly through an
adiabatically stratified plasma that represents the solar convection zone. The
MHD equations are solved in the anelastic approximation, and the results are
compared with studies of flux tube fragmentation in two dimensions. We find
that if the initial amount of field line twist is below a critical value, the
degree of fragmentation at the apex of a rising Omega-loop depends on its
three-dimensional geometry: the greater the apex curvature of a given
Omega-loop, the lesser the degree of fragmentation of the loop as it approaches
the photosphere. Thus, the amount of initial twist necessary for the loop to
retain its cohesion can be reduced substantially from the two-dimensional
limit. The simulations also suggest that as a fragmented flux tube emerges
through a relatively quiet portion of the solar disk, extended crescent-shaped
magnetic features of opposite polarity should form and steadily recede from one
another. These features eventually coalesce after the fragmented portion of the
Omega-loop emerges through the photosphere.Comment: 17 pages, 17 figures, uses AAS LaTeX macros v5.0. ApJ, in pres
CDH11 inhibits proliferation and invasion in head and neck cancer
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135974/1/jop12471_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135974/2/jop12471.pd
Lifting CDCL to template-based abstract domains for program verification
The success of Conflict Driven Clause Learning (CDCL) for Boolean satisfiability has inspired adoption in other domains. We present a novel lifting of CDCL to program analysis called Abstract Conflict Driven Learning for Programs (ACDLP). ACDLP alternates between model search, which performs over-approximate deduction with constraint propagation, and conflict analysis, which performs under-approximate abduction with heuristic choice. We instantiate the model search and conflict analysis algorithms with an abstract domain of template polyhedra, strictly generalizing CDCL from the Boolean lattice to a richer lattice structure. Our template polyhedra can express intervals, octagons and restricted polyhedral constraints over program variables. We have implemented ACDLP for automatic bounded safety verification of C programs. We evaluate the performance of our analyser by comparing with CBMC, which uses Boolean CDCL, and Astrée, a commercial abstract interpretation tool. We observe two orders of magnitude reduction in the number of decisions, propagations, and conflicts as well as a 1.5x speedup in runtime compared to CBMC. Compared to Astrée, ACDLP solves twice as many benchmarks and has much higher precision. This is the first instantiation of CDCL with a template polyhedra abstract domain
Automated Reasoning and Presentation Support for Formalizing Mathematics in Mizar
This paper presents a combination of several automated reasoning and proof
presentation tools with the Mizar system for formalization of mathematics. The
combination forms an online service called MizAR, similar to the SystemOnTPTP
service for first-order automated reasoning. The main differences to
SystemOnTPTP are the use of the Mizar language that is oriented towards human
mathematicians (rather than the pure first-order logic used in SystemOnTPTP),
and setting the service in the context of the large Mizar Mathematical Library
of previous theorems,definitions, and proofs (rather than the isolated problems
that are solved in SystemOnTPTP). These differences poses new challenges and
new opportunities for automated reasoning and for proof presentation tools.
This paper describes the overall structure of MizAR, and presents the automated
reasoning systems and proof presentation tools that are combined to make MizAR
a useful mathematical service.Comment: To appear in 10th International Conference on. Artificial
Intelligence and Symbolic Computation AISC 201
Simulation of the Formation of a Solar Active Region
We present a radiative magnetohydrodynamics simulation of the formation of an
Active Region on the solar surface. The simulation models the rise of a buoyant
magnetic flux bundle from a depth of 7.5 Mm in the convection zone up into the
solar photosphere. The rise of the magnetic plasma in the convection zone is
accompanied by predominantly horizontal expansion. Such an expansion leads to a
scaling relation between the plasma density and the magnetic field strength
such that . The emergence of magnetic flux into the
photosphere appears as a complex magnetic pattern, which results from the
interaction of the rising magnetic field with the turbulent convective flows.
Small-scale magnetic elements at the surface first appear, followed by their
gradual coalescence into larger magnetic concentrations, which eventually
results in the formation of a pair of opposite polarity spots. Although the
mean flow pattern in the vicinity of the developing spots is directed radially
outward, correlations between the magnetic field and velocity field
fluctuations allow the spots to accumulate flux. Such correlations result from
the Lorentz-force driven, counter-streaming motion of opposite-polarity
fragments. The formation of the simulated Active Region is accompanied by
transient light bridges between umbrae and umbral dots. Together with recent
sunspot modeling, this work highlights the common magnetoconvective origin of
umbral dots, light bridges and penumbral filaments.Comment: Accepted for publication in Ap
Abnormal ECG Findings in Athletes: Clinical Evaluation and Considerations.
PURPOSE OF REVIEW: Pre-participation cardiovascular evaluation with electrocardiography is normal practice for most sporting bodies. Awareness about sudden cardiac death in athletes and recognizing how screening can help identify vulnerable athletes have empowered different sporting disciplines to invest in the wellbeing of their athletes. RECENT FINDINGS: Discerning physiological electrical alterations due to athletic training from those representing cardiac pathology may be challenging. The mode of investigation of affected athletes is dependent on the electrical anomaly and the disease(s) in question. This review will highlight specific pathological ECG patterns that warrant assessment and surveillance, together with an in-depth review of the recommended algorithm for evaluation
Seismology of the Sun : Inference of Thermal, Dynamic and Magnetic Field Structures of the Interior
Recent overwhelming evidences show that the sun strongly influences the
Earth's climate and environment. Moreover existence of life on this Earth
mainly depends upon the sun's energy. Hence, understanding of physics of the
sun, especially the thermal, dynamic and magnetic field structures of its
interior, is very important. Recently, from the ground and space based
observations, it is discovered that sun oscillates near 5 min periodicity in
millions of modes. This discovery heralded a new era in solar physics and a
separate branch called helioseismology or seismology of the sun has started.
Before the advent of helioseismology, sun's thermal structure of the interior
was understood from the evolutionary solution of stellar structure equations
that mimicked the present age, mass and radius of the sun. Whereas solution of
MHD equations yielded internal dynamics and magnetic field structure of the
sun's interior. In this presentation, I review the thermal, dynamic and
magnetic field structures of the sun's interior as inferred by the
helioseismology.Comment: To be published in the proceedings of the meeting "3rd International
Conference on Current Developments in Atomic, Molecular, Optical and Nano
Physics with Applications", December 14-16, 2011, New Delhi, Indi
Checking bounded reachability in asynchronous systems by symbolic event tracing
This report presents a new symbolic technique for checking reachability properties of asynchronous systems by reducing the problem to satisfiability in restrained difference logic. The analysis is bounded by fixing a finite set of potential events, each of which may occur at most once in any order. The events are specified using high-level Petri nets. The logic encoding describes the space of possible causal links between events rather than possible sequences of states as in Bounded Model Checking. Independence between events is exploited intrinsically without partial order reductions, and the handling of data is symbolic. On a family of benchmarks, the proposed approach is consistently faster than Bounded Model Checking. In addition, this report presents a compact encoding of the restrained subset of difference logic in propositional logic
- …