491 research outputs found
At-risk serum cholesterol profile at both ends of the nutrition spectrum in West African adults? The Benin study
Low HDL-cholesterol (HDL-C), using as cut-offs 1.03 mmol/L in men and 1.29 mmol/L in women, was observed in more than 25% apparently healthy adults (n = 541) in a cross-sectional study on nutrition transition and cardiometabolic risk factors (CMRF) in Benin, West Africa. Both overweight/obesity (35.3%) and underweight (11.3%) were present, displaying the double burden of malnutrition. We examined in more depth the association of low HDL-C with nutrition and with other CMRF. Metabolic syndrome components were assessed, plus the ratio of total cholesterol (TC)/HDL-C and serum homocysteine. Insulin resistance was based on Homeostasis Model Assessment. We also measured BMI and body composition by bio-impedance. Dietary quality was appraised with two non-consecutive 24 h recalls. Low HDL-C was associated with much higher TC/HDL-C and more abdominal obesity in men and women and with more insulin resistance in women. The rate of low HDL-C was highest (41.9%) among the overweight/obese subjects (BMI ≥ 25), but it also reached 31.1% among the underweight (BMI < 18.5), compared with 17.3% among normal-weight subjects (p < 0.001). Lower dietary micronutrient adequacy, in particular, in vitamins A, B3, B12, zinc and calcium, was associated with low HDL-C when controlling for several confounders. This suggests that at-risk lipoprotein cholesterol may be associated with either underweight or overweight/obesity and with poor micronutrient intake
Pkd1 transgenic mice: Adult model of polycystic kidney disease with extrarenal and renal phenotypes
While high levels of Pkd1 expression are detected in tissues of patients with autosomal dominant polycystic kidney disease (ADPKD), it is unclear whether enhanced expression could be a pathogenetic mechanism for this systemic disorder. Three transgenic mouse lines were generated from a Pkd1-BAC modified by introducing a silent tag via homologous recombination to target a sustained wild type genomic Pkd1 expression within the native tissue and temporal regulation. These mice specifically overexpressed the Pkd1 transgene in extrarenal and renal tissues from approximately 2- to 15-fold over Pkd1 endogenous levels in a copy-dependent manner. All transgenic mice reproducibly developed tubular and glomerular cysts leading to renal insufficiency. Interestingly, Pkd1(TAG) mice also exhibited renal fibrosis and calcium deposits in papilla reminiscent of nephrolithiasis as frequently observed in ADPKD. Similar to human ADPKD, these mice consistently displayed hepatic fibrosis and approximately 15% intrahepatic cysts of the bile ducts affecting females preferentially. Moreover, a significant proportion of mice developed cardiac anomalies with severe left ventricular hypertrophy, marked aortic arch distention and/or valvular stenosis and calcification that had profound functional impact. Of significance, Pkd1(TAG) mice displayed occasional cerebral lesions with evidence of ruptured and unruptured cerebral aneurysms. This Pkd1(TAG) mouse model demonstrates that overexpression of wildtype Pkd1 can trigger the typical adult renal and extrarenal phenotypes resembling human ADPKD.This work was supported
by the Canadian Institutes of Health Research (CIHR) [MOP-81325 to MT] and a CIHR Frederick
Banting and Charles Best studentship to AK and a Fonds de la Recherche en Santé du Québec (FRSQ)
studentship to MC
On Hurst exponent estimation under heavy-tailed distributions
In this paper, we show how the sampling properties of the Hurst exponent
methods of estimation change with the presence of heavy tails. We run extensive
Monte Carlo simulations to find out how rescaled range analysis (R/S),
multifractal detrended fluctuation analysis (MF-DFA), detrending moving average
(DMA) and generalized Hurst exponent approach (GHE) estimate Hurst exponent on
independent series with different heavy tails. For this purpose, we generate
independent random series from stable distribution with stability exponent
{\alpha} changing from 1.1 (heaviest tails) to 2 (Gaussian normal distribution)
and we estimate the Hurst exponent using the different methods. R/S and GHE
prove to be robust to heavy tails in the underlying process. GHE provides the
lowest variance and bias in comparison to the other methods regardless the
presence of heavy tails in data and sample size. Utilizing this result, we
apply a novel approach of the intraday time-dependent Hurst exponent and we
estimate the Hurst exponent on high frequency data for each trading day
separately. We obtain Hurst exponents for S&P500 index for the period beginning
with year 1983 and ending by November 2009 and we discuss the surprising result
which uncovers how the market's behavior changed over this long period
Human in vitro reporter model of neuronal development and early differentiation processes
<p>Abstract</p> <p>Background</p> <p>During developmental and adult neurogenesis, doublecortin is an early neuronal marker expressed when neural stem cells assume a neuronal cell fate. To understand mechanisms involved in early processes of neuronal fate decision, we investigated cell lines for their capacity to induce expression of doublecortin upon neuronal differentiation and develop <it>in vitro </it>reporter models using doublecortin promoter sequences.</p> <p>Results</p> <p>Among various cell lines investigated, the human teratocarcinoma cell line NTERA-2 was found to fulfill our criteria. Following induction of differentiation using retinoic acid treatment, we observed a 16-fold increase in doublecortin mRNA expression, as well as strong induction of doublecortin polypeptide expression. The acquisition of a neuronal precursor phenotype was also substantiated by the establishment of a multipolar neuronal morphology and expression of additional neuronal markers, such as Map2, βIII-tubulin and neuron-specific enolase. Moreover, stable transfection in NTERA-2 cells of reporter constructs encoding fluorescent or luminescent genes under the control of the doublecortin promoter allowed us to directly detect induction of neuronal differentiation in cell culture, such as following retinoic acid treatment or mouse Ngn2 transient overexpression.</p> <p>Conclusion</p> <p>Induction of doublecortin expression in differentiating NTERA-2 cells suggests that these cells accurately recapitulate some of the very early events of neuronal determination. Hence, the use of reporter genes under the control of the doublecortin promoter in NTERA-2 cells will help us to investigate factors involved early in the course of neuronal differentiation processes. Moreover the ease to detect the induction of a neuronal program in this model will permit to perform high throughput screening for compounds acting on the early neuronal differentiation mechanisms.</p
Characterization of human metapneumoviruses isolated from patients in North America.
Human metapneumovirus (HMPV) was recently identified in The Netherlands and was linked to acute respiratory tract illness. In this study, 11 isolates from 10 patients with respiratory disease from Quebec, Canada, were tested by a reverse-transcriptase polymerase chain reaction based on the fusion protein gene. Identified sequences were consistent with HMPV. The patients were 2 months to 87 years of age (median age, 58 years) and presented with acute respiratory tract illness during the winter season. Sequence studies of the nucleocapsid, fusion, and polymerase genes identified 2 main lineages of HMPV and cocirculation of both lineages during the same year. These findings support a previous finding that HMPV is a human respiratory pathogen that merits further study
Recommended from our members
Characterization of Epitaxial Film Silicon Solar Cells Grown on Seeded Display Glass: Preprint
We report characterizations of epitaxial film crystal silicon (c-Si) solar cells with open-circuit voltages (Voc) above 560 mV. The 2-um absorber cells are grown by low-temperature (<750 degrees C) hot-wire CVD (HWCVD) on Corning EAGLE XG display glass coated with a layer-transferred (LT) Si seed. The high Voc is a result of low-defect epitaxial Si (epi-Si) growth and effective hydrogen passivation of defects. The quality of HWCVD epitaxial growth on seeded glass substrates depends on the crystallographic quality of the seed and the morphology of the epitaxial growth surface. Heterojunction devices consist of glass/c-Si LT seed/ epi n+ Si:P/epi n- Si:P/intrinsic a-Si:H/p+ a-Si:H/ITO. Similar devices grown on electronically 'dead' n+ wafers have given Voc {approx}630 mV and {approx}8% efficiency with no light trapping features. Here we study the effects of the seed surface polish on epi-Si quality, how hydrogenation influences the device character, and the dominant junction transport physics
Reliable Activation of Immature Neurons in the Adult Hippocampus
Neurons born in the adult dentate gyrus develop, mature, and connect over a long interval that can last from six to eight weeks. It has been proposed that, during this period, developing neurons play a relevant role in hippocampal signal processing owing to their distinctive electrical properties. However, it has remained unknown whether immature neurons can be recruited into a network before synaptic and functional maturity have been achieved. To address this question, we used retroviral expression of green fluorescent protein to identify developing granule cells of the adult mouse hippocampus and investigate the balance of afferent excitation, intrinsic excitability, and firing behavior by patch clamp recordings in acute slices. We found that glutamatergic inputs onto young neurons are significantly weaker than those of mature cells, yet stimulation of cortical excitatory axons elicits a similar spiking probability in neurons at either developmental stage. Young neurons are highly efficient in transducing ionic currents into membrane depolarization due to their high input resistance, which decreases substantially in mature neurons as the inward rectifier potassium (Kir) conductance increases. Pharmacological blockade of Kir channels in mature neurons mimics the high excitability characteristic of young neurons. Conversely, Kir overexpression induces mature-like firing properties in young neurons. Therefore, the differences in excitatory drive of young and mature neurons are compensated by changes in membrane excitability that render an equalized firing activity. These observations demonstrate that the adult hippocampus continuously generates a population of highly excitable young neurons capable of information processing
Body fat measurement by bioelectrical impedance and air displacement plethysmography: a cross-validation study to design bioelectrical impedance equations in Mexican adults
<p>Abstract</p> <p>Background</p> <p>The study of body composition in specific populations by techniques such as bio-impedance analysis (BIA) requires validation based on standard reference methods. The aim of this study was to develop and cross-validate a predictive equation for bioelectrical impedance using air displacement plethysmography (ADP) as standard method to measure body composition in Mexican adult men and women.</p> <p>Methods</p> <p>This study included 155 male and female subjects from northern Mexico, 20–50 years of age, from low, middle, and upper income levels. Body composition was measured by ADP. Body weight (BW, kg) and height (Ht, cm) were obtained by standard anthropometric techniques. Resistance, R (ohms) and reactance, Xc (ohms) were also measured. A random-split method was used to obtain two samples: one was used to derive the equation by the "all possible regressions" procedure and was cross-validated in the other sample to test predicted versus measured values of fat-free mass (FFM).</p> <p>Results and Discussion</p> <p>The final model was: FFM (kg) = 0.7374 * (Ht<sup>2 </sup>/R) + 0.1763 * (BW) - 0.1773 * (Age) + 0.1198 * (Xc) - 2.4658. R<sup>2 </sup>was 0.97; the square root of the mean square error (SRMSE) was 1.99 kg, and the pure error (PE) was 2.96. There was no difference between FFM predicted by the new equation (48.57 ± 10.9 kg) and that measured by ADP (48.43 ± 11.3 kg). The new equation did not differ from the line of identity, had a high R<sup>2 </sup>and a low SRMSE, and showed no significant bias (0.87 ± 2.84 kg).</p> <p>Conclusion</p> <p>The new bioelectrical impedance equation based on the two-compartment model (2C) was accurate, precise, and free of bias. This equation can be used to assess body composition and nutritional status in populations similar in anthropometric and physical characteristics to this sample.</p
- …