7,396 research outputs found

    Application of NASTRAN/COSMIC in the analysis of ship structures to underwater explosion shock

    Get PDF
    The application of NASTRAN/COSMIC in predicting the transient motion of ship structures to underwater, non-contact explosions is discussed. Examples illustrate the finite element models, mathematical formulations of loading functions and, where available, comparisons between analytical and experimental results

    Bifid median nerve as a determinant of carpal tunnel syndrome recurrence after endoscopic procedures. A case report

    Get PDF
    A number of complications have been associated with endoscopic technique in treating carpal tunnel syndrome (CTS). We observed a female patient who had previously undergone endoscopic surgery for CTS. Shortly after surgery, this patient complained of pain, numbness and strength deficiency, as severe as it was before the operation. A new, open, surgical procedure was performed. During this second-look surgery, we found a bifid median nerve, which divided into two branches at the second third of the forearm, proximal to the flexor retinaculum. We strongly suggest a careful exploration of the median nerve in the carpal tunnel. Moreover, we believe that an extensive preoperative assessment of median nerve morphology and function is mandatory prior to endoscopic approach in treating CTS

    Recurring patterns in stationary intervals of abdominal uterine electromyograms during gestation

    Get PDF
    Abdominal uterine electromyograms (uEMG) studies have focused on uterine contractions to describe the evolution of uterine activity and preterm birth (PTB) prediction. Stationary, non-contracting uEMG has not been studied. The aim of the study was to investigate the recurring patterns in stationary uEMG, their relationship with gestation age and PTB, and PTB predictivity. A public database of 300 (38 PTB) three-channel (S1-S3) uEMG recordings of 30 min, collected between 22 and 35 weeks' gestation, was used. Motion and labour contraction-free intervals in uEMG were identified as 5-min weak-sense stationarity intervals in 268 (34 PTB) recordings. Sample entropy (SampEn), percentage recurrence (PR), percentage determinism (PD), entropy (ER), and maximum length (L MAX) of recurrence were calculated and analysed according to the time to delivery and PTB. Random time series were generated by random shuffle (RS) of actual data. Recurrence was present in actual data (p<0.001) but not RS. In S3, PR (p<0.005), PD (p<0.01), ER (p<0.005), and L MAX (p<0.05) were higher, and SampEn lower (p<0.005) in PTB. Recurrence indices increased (all p<0.001) and SampEn decreased (p<0.01) with decreasing time to delivery, suggesting increasingly regular and recurring patterns with gestation progression. All indices predicted PTB with AUC≥0.62 (p<0.05). Recurring patterns in stationary non-contracting uEMG were associated with time to delivery but were relatively poor predictors of PTB

    Beyond the fundamental noise limit in coherent optical fiber links

    Get PDF
    It is well known that temperature variations and acoustic noise affect ultrastable frequency dissemination along optical fiber. Active stabilization techniques are in general adopted to compensate for the fiber-induced phase noise. However, despite this compensation, the ultimate link performances remain limited by the so called delay-unsuppressed fiber noise that is related to the propagation delay of the light in the fiber. In this paper, we demonstrate a data post-processing approach which enables us to overcome this limit. We implement a subtraction algorithm between the optical signal delivered at the remote link end and the round-trip signal. In this way, a 6 dB improvement beyond the fundamental limit imposed by delay-unsuppressed noise is obtained. This result enhances the resolution of possible comparisons between remote optical clocks by a factor of 2. We confirm the theoretical prediction with experimental data obtained on a 47 km metropolitan fiber link, and propose how to extend this method for frequency dissemination purposes as well

    Entangling quantum and classical states of light

    Full text link
    Entanglement between quantum and classical objects is of special interest in the context of fundamental studies of quantum mechanics and potential applications to quantum information processing. In quantum optics, single photons are treated as light quanta while coherent states are considered the most classical among all pure states. Recently, entanglement between a single photon and a coherent state in a free-traveling field was identified to be a useful resource for optical quantum information processing. However, it was pointed out to be extremely difficult to generate such states since it requires a clean cross-Kerr nonlinear interaction. Here, we devise and experimentally demonstrate a scheme to generate such hybrid entanglement by implementing a coherent superposition of two distinct quantum operations. The generated states clearly show entanglement between the two different types of states. Our work opens a way to generate hybrid entanglement of a larger size and to develop efficient quantum information processing using such a new type of qubits.Comment: 9 pages, 4 figure

    Damping of waves of agitation in starling flocks

    Get PDF
    When a predator attacks a flock of starlings (Sturnus vulgaris), involving thousands of individuals, a typical collective escape response is the so-called agitation wave, consisting of one or more dark bands (pulses) propagating through the flock and moving away from the predator (usually a Peregrine falcon, Falco peregrinus). The mechanism underlying this collective behavior remains debated. A theoretical study has suggested that the individual motion underlying a pulse could be a skitter (in the form of a zigzag), that is copied by nearby neighbors, and causes us to temporarily observe a larger surface of the wing because the bird is banking during turning while zigzagging. It is not known, however, whether pulses during a wave event weaken over time. This is of interest, because whereas during the usual turning by an undisturbed flock the motion is copied completely without weakening, we may expect that pulses dampen during a wave event because individuals that are further away from a predator react less because of reduced fear. In the present paper, we show in empirical data that pulses during a wave event weaken over time. Our computational model, StarDisplay, reveals that this is most likely a consequence of a reduction of the maximum banking angle during the zigzag escape maneuver rather than by a reduced tendency to copy this maneuver with time. The response seems adaptive because of lowered danger at a larger distance to the location of attack

    Handover Control for Human-Robot and Robot-Robot Collaboration

    Get PDF
    Modern scenarios in robotics involve human-robot collaboration or robot-robot cooperation in unstructured environments. In human-robot collaboration, the objective is to relieve humans from repetitive and wearing tasks. This is the case of a retail store, where the robot could help a clerk to refill a shelf or an elderly customer to pick an item from an uncomfortable location. In robot-robot cooperation, automated logistics scenarios, such as warehouses, distribution centers and supermarkets, often require repetitive and sequential pick and place tasks that can be executed more efficiently by exchanging objects between robots, provided that they are endowed with object handover ability. Use of a robot for passing objects is justified only if the handover operation is sufficiently intuitive for the involved humans, fluid and natural, with a speed comparable to that typical of a human-human object exchange. The approach proposed in this paper strongly relies on visual and haptic perception combined with suitable algorithms for controlling both robot motion, to allow the robot to adapt to human behavior, and grip force, to ensure a safe handover. The control strategy combines model-based reactive control methods with an event-driven state machine encoding a human-inspired behavior during a handover task, which involves both linear and torsional loads, without requiring explicit learning from human demonstration. Experiments in a supermarket-like environment with humans and robots communicating only through haptic cues demonstrate the relevance of force/tactile feedback in accomplishing handover operations in a collaborative task

    Control of sliding velocity in robotic object pivoting based on tactile sensing

    Get PDF
    Control of robots manipulating objects using only the sense of touch is a challenge. In-hand motion of the manipulated object highly depends on the friction forces acting at the contact surfaces. Soft contacts allow torsional frictions as well as friction forces, therefore robots can perform more complex manipulation abilities, like object pivoting. Control of the pivoting sliding motion is very difficult especially without any visual feedback. The paper proposes a novel method to control the sliding velocity of the object by using a simple parallel gripper endowed with force/tactile sensors only. The strategy is based on a nonlinear observer that estimates the sliding velocity from force/torque measurements and a model of the sliding dynamics
    • …
    corecore