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Modern scenarios in robotics involve human-robot collaboration or robot-robot
cooperation in unstructured environments. In human-robot collaboration, the
objective is to relieve humans from repetitive and wearing tasks. This is the case
of a retail store, where the robot could help a clerk to refill a shelf or an elderly
customer to pick an item from an uncomfortable location. In robot-robot cooperation,
automated logistics scenarios, such as warehouses, distribution centers and
supermarkets, often require repetitive and sequential pick and place tasks that
can be executed more efficiently by exchanging objects between robots, provided
that they are endowed with object handover ability. Use of a robot for passing objects
is justified only if the handover operation is sufficiently intuitive for the involved
humans, fluid and natural, with a speed comparable to that typical of a human-
human object exchange. The approach proposed in this paper strongly relies on
visual and haptic perception combined with suitable algorithms for controlling both
robot motion, to allow the robot to adapt to human behavior, and grip force, to ensure
a safe handover. The control strategy combines model-based reactive control
methods with an event-driven state machine encoding a human-inspired behavior
during a handover task, which involves both linear and torsional loads, without
requiring explicit learning from human demonstration. Experiments in a
supermarket-like environment with humans and robots communicating only
through haptic cues demonstrate the relevance of force/tactile feedback in
accomplishing handover operations in a collaborative task.
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1 INTRODUCTION

Recent studies testify an increasing use of robots in retail environments with a number of
objectives: to relieve staff from repetitive tasks with low added value; to reallocate clerks to
customer-facing activities; to gather in-store data for real-time inventory to reduce out-of-
stock losses (Retail Analytics Council, 2020). Commercial solutions already exist for
automated inventory management, e.g., the Bossa Nova 2020, Tally 3.0 by Simberobotics,
LoweBot by Fellow Robots or Stockbot by PAL robotics (Bogue, 2019). However, other in-store
logistic processes, like product pre-sorting and shelf re-stocking are still difficult to automate,
even though there is a strong interest from retailers, due to their high costs (Kuhn and
Sternbeck, 2013). The most time consuming task is the shelf replenishment and 50% of such
time is devoted to find the correct slot on the shelf. Only few scientific contributions exist on
this logistic automation problem (Ricardez et al., 2020; Sakai et al., 2020), mainly related to the
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Future Convenience Store robotic challenge launched by the
World Robotic Summit1. This is because the re-stocking task
involves complex manipulation operations that are still a
challenge for a robot. Dexterous manipulation of objects
with unknown physical properties is very difficult,
especially with simple grippers like parallel jaws, that are
the most widespread devices for material handling. Adopting
a fixed grasp with a parallel gripper can be very limiting when
objects have to be handled in cluttered and narrow spaces.
Changing the grasp configuration without re-grasping the
object requires the ability to re-orient the object in hand, that
is a pivoting motion about the grasping axis of the parallel
gripper. Recent papers demonstrated that such in-hand
manipulation abilities allow a robot to autonomously refill
a supermarket shelf (Costanzo et al., 2020b; Costanzo et al.,
2020c; Costanzo et al., 2021). Nevertheless, the whole re-
stocking process requires execution of additional tasks that
cannot be executed by robots, like opening cartons, removing
packaging of multiple items before placing them on the shelf,
or handling exceptions, like liquid spills. All these operations
demand for complex cognitive and/or manipulative skills that
are still a human prerogative. Therefore, with the current
technology a step toward automation of retail logistics can be
taken through execution of such processes in a collaborative
way, where robots and humans are able to exchange objects,
the so-called handover operation. Availability of a robot able
to receive objects from the human clerk (H2R operation) can
significantly alleviate the human workload since the robot can
easily reach lower or higher shelf layers, that are outside the
ergonomic golden zone. The dual robot-to-human operation
(R2H) can be very useful in stores to help impaired or elderly
people to retrieve products from the shelves. Analogously, in
fulfilment centers of large on-line stores, robots can retrieve
products from shelves and pass them to a human operator
who takes care of their packaging. In a more futuristic
scenario where robots can fully replace human clerks, the
robot-to-robot (R2R) handover operation can be envisaged
during the whole in-store logistic process.

The handover task is commonly defined in the robotics
community as a joint action between two agents, the giver and
the receiver (Ortenzi et al., 2020). It is usually divided into two
phases, the pre-handover and the physical handover. In each
phase, a number of aspects should be considered. For a detailed
review of each aspect, the reader is referred to the survey by
Ortenzi et al. (2020); in the following only a short review is
presented with the aim to frame the contribution of the present
paper within the literature.

The communication mechanism is crucial for initiating the
action and to coordinate it as soon as it has started (Strabala et al.,
2013). We address only the communication problem during the
physical handover phase, and we adopt haptic cues as the sole
communication mean between the two agents, even in the R2R

handover the robot controllers do not share any further
communication channel. The cues are a simple code based on
the interaction force perceived by the agents through tactile
sensing at fingertips. The code assumes that robots are able to
measure all components of the force vector, thus the grippers are
equipped with force/tactile sensors built in our laboratory (see the
experimental setup in Figure 1).

Grasp planning is another fundamental problem to tackle for
an effective handover execution. Ideally, the giver should grasp
the object in such a way the receiver does not need to perform
complex manipulation actions after the handover before using
the object, as discussed, e.g., in Aleotti et al. (2014). In a R2H
context, the robot should be capable of dexterous operations to
hand the object over in a proper pose. Even parallel grippers are
able to perform in-hand manipulation actions as demonstrated
by Costanzo et al. (2020a). Both object and gripper pivoting
maneuvers are used in this paper to achieve this objective, for
instance, choosing an object orientation so as to avoid high
torsional loads at receiver fingertips in case a precision grasp
is needed to take the object. This can likely happen in a
collaborative packaging task where the human operator has to
arrange in a box the items passed by the robot. In the H2R
context, as proved by many studies on human behavior, e.g.
(Sartori et al., 2011), the giver grasps the object to hand over by
considering the final goal of the receiver. If a desired orientation is
required, the robot should apply a grasp force suitable to hold also
the torsional load. To the best of our knowledge no other research
deals with handover of objects subject to torsional load.

Still in the H2R operation, visual perception of the object
location by the robot is challenging since it has to be performed
with the object already grasped by the human, hence it is partially
occluded. We adopt a texture-based approach that tracks 3D key
points on the object surface detected by an eye-in-hand RGB-D
camera. Hence, the robot directly tracks the object rather than the
human hand, and no additional markers are needed, differently
from the marker-based solutions proposed by Medina et al.
(2016) and by Pan et al. (2018). Among the marker-less
approaches, recent works are (Nemlekar et al., 2019; Yang
et al., 2020; Rosenberger et al., 2021). Each of these works on
H2R handover, and our paper, use object and/or human tracking
with a different aim. Nemlekar et al. (2019) focus on reaching the
handover location by tracking the human skeleton and predicting
the so-called Object Transfer Point, Yang et al. (2020) focus on
the choice of the grasp orientation based on the human grasp
type, while Rosenberger et al. (2021) focus on the choice of a grasp
that ensures the safety of the human using eye-in-hand vision.
Our approach, instead, aims at reaching a grasp selected
beforehand based on the task that the robot has to perform
after the handover, i.e. placing the object on the shelf possibly
using in-hand manipulation which requires specific constraints
on the grasp. Differently from the solution by Yang et al. (2020),
in our work the grasp motion is not planned but directly executed
in a closed-loop fashion, this allows the robot to achieve a speed
comparable to the human one while automatically reacting to the
giver motion. The approach proposed by Rosenberger et al.
(2021) is computationally demanding and it is still not suitable
for real-time closed-loop control. In contrast, our approach

1World Robotic Summit (2021). Future Convenience Store Challenge. Available at:
https://worldrobotsummit.org/en/wrs2020/challenge/service/fcsc.html (Accessed
April 20, 2021).
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requires an object database containing the grasp poses (this is a
fair assumption in a supermarket scenario) but enables a fast
closed-loop control and can track the object even if the human
changes the object pose during the handover execution. The main
limit of the solution by Nemlekar et al. (2019) is the need to keep
the entire skeleton of the human body within the field of view of
the camera to allow the tracking algorithm to work properly; this
limit has been overcome by Rosenberger et al. (2021) who can
track only parts of the human body as well as our approach which
tracks the object only.

A fast visual servoing loop is used in this paper to control the
robot receiver motion in such a way the handover is fluid, that is a
primary requirement as discussed by Medina et al. (2016). This
way, during the H2R operation the handover location is chosen
by the giver and the receiver moves toward it in real-time. For
instance, this is helpful if the human has a limited workspace and
the robot has to reach an handover location compliant with the
human constraints. When the robot approaches the object, the
initial error between the actual and desired robot location could
be high, in the classical algorithm by Marchand et al. (2005) this
issue limits the dynamic performance of the visual servoing
controller. This paper improves the dynamic performance of
the visual controller in terms of speed by using a time-varying
reference on the feature space to have a low tracking error and
higher control gains.

During the physical handover phase the object load is
shared by the giver and the receiver. A number of studies on
the forces exchanged by humans during this phase have been
carried out. For instance, Mason and MacKenzie (2005)
found that the grip force of both giver and receiver is
modulated during the object exchange. The giver decreases
its grip force, while the receiver increases it until the load is
transferred. Another relevant aspect, highlighted by Chan
et al. (2012), consists in the post-unloading phase, when the
giver still applies a grasping force even though its sensed load
is almost zero. This means that the giver is the agent
responsible of the object safety during the passing. The
main contribution of the present paper focuses on these
two aspects by proposing grip force modulation

algorithms, based on the sole load perception including
both linear and torsional one, for enabling a safe load
sharing and transferring. The building blocks are the
slipping avoidance algorithm originally proposed by
Costanzo et al. (2020b) and the in-hand pivoting abilities
devised by Costanzo et al. (2020a). In the H2R operation the
robot gripper is controlled using the slipping avoidance
modality so as the grip force is automatically computed
based on the sensed load and slipping velocity estimated
through the nonlinear observer proposed by Cavallo et al.
(2020). However, the slipping avoidance strategy alone
revealed ineffective, a communication channel has to be
established between the giver and the receiver. We adopt
haptic cues applied by the robot to the giver to communicate
that the contact with the object is established and its readiness
to hold the load. The load transfer takes place safely and
effectively without any knowledge of the object inertial
properties and center of gravity position with respect to
grasping points, but only friction parameters have to be
known in advance, mainly related to object surface
material. Differently from the approach by Medina et al.
(2016), no model learning phase is required.

In the R2H operation the grip release strategy is of paramount
importance. Most of the works adopt a simplistic approach,
namely, the robot releases the object as soon as a pull by the
receiver is detected. However, taking the release decision based on
the pulling force only might cause object falls if the receiver is not
sharing the load. On the other hand, works deciding the grip
release on the load sharing only might be wrong as well since
without any pulling force cue there is no clear knowledge of the
receiver intention. In this paper, we adopt a strategy based on
both indicators, the pulling force and the load share. This greatly
enhances the reliability of the R2H handover.

In the R2R operation reliability of the object passing is crucial.
Assuming the adoption of parallel grippers only, if the receiver
grasps the object in a location too far from the center of gravity,
the grip forcemight exceed the gripper force capability to keep the
initial object orientation. In this case the giver should foresee this
situation and avoid the grip release. It should communicate to the

FIGURE 1 | Left picture: Experimental setup for the robot-to-human and human-to-robot handover, the frame ∑G (in RGB convention) is the grasp frame, the
magenta arrow represents the pulling direction ypull (defined in Section 3);Right picture: Experimental setup for the robot-to-robot handover. The robot on the left is the
receiver and is equipped with an eye-in-hand camera to track the object to take. Both robots are endowed with force/tactile sensors.
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receiver the need to change the grasp location. We present here a
first method to address the problem, based on the anticipatory
detection of the slipping velocity. This feature is enabled, in this
paper, by a smart use of the slipping detection algorithm by the
giver and the controlled sliding by the receiver. Remarkably, in
our approach the two robots are independent agents and the
controllers are not coordinated but they communicate via haptic
cues only.

The rest of the paper is organized as follows. Section 2
describes the reactive control algorithms for visual servoing,
slipping avoidance and controlled sliding. Section 3 presents
the finite state machines (FSM) handling the whole handover
task in the three scenarios R2H, H2R and R2R. Experimental
results obtained in an in-store logistics collaborative scenario
are described in Section 4, while conclusions are drawn in
Section 5.

2 REACTIVE CONTROLLERS

In the handover execution, we assume that the receiver,
whoever it is, has to adapt to the giver behavior. For
instance, in all operation types, the giver shows the object
to the receiver in a zone within its field of view, and the
receiver has to reach such location even if the giver moves
before giving the object. Even in the R2R case this should be
achieved because we assume there is no communication
between the two control units, apart from the haptic cues
during the physical handover. Moreover, any handover task is
characterized by a large degree of uncertainty affecting the
handover location, object mass and grasp location. We
address these issues by resorting to sensor-based reactive
control. The first controller is based on visual feedback and is
a fast visual servoing algorithm aimed at tracking the object
motion carried by the giver. The second controller is based on
force/tactile feedback and aims at modulating the grip force
so as to avoid object slippage while transferring the load from
the giver to the receiver. The two controllers are activated in
different times and the scheduling logic is encoded in the state
machines described in Section 3.

2.1 Visual Servoing Controller
The objective of the visual servoing controller is to generate a
velocity of the receiver hand so as to grasp the object to
exchange. This feature is certainly needed in the H2R
operation, but it can be useful even in the R2R operation
in case the base frames of the two robotic agents are not
calibrated, as in our experiments.

During the H2R handover, the human giver presents an
item to the robot by putting it within the field of view of the
camera. Since the human is not able to keep the object fixed or
because he/she would like to move the object before passing
it, the handover location is time-variant. We address this
problem by using a visual servoing controller that tracks the
object and controls the robot velocity toward the object
location.

The controller is based on the ViSP library (Marchand et al.,
2005) and uses the images acquired from an RGB-D camera
(RealSense D435i in Figure 1) to adjust the robot pose with
respect to the object and correctly grasp it. We acquire offline a
target image that corresponds to the desired grasp configuration,
then the algorithm moves the robot to align the current image
with the target one. The target image implicitly defines the end-
effector pose relative to the object, i.e. the grasp pose. The grasp
pose of each object is calibrated in a preliminary phase using the
gripper with two calibration fingers specifically designed to
achieve the desired accuracy of the grasping location. In this
paper, for each object there is only one grasp pose, but the same
procedure can be repeated to define multiple grasp poses as
proposed by Costanzo et al. (2021) for a pick-and-place task. The
images are synthetically represented by 3D feature points
matched between the target image and the current image by
means of a keypoint matching algorithm available in the ViSP
library.

The visual servoing algorithmminimizes the error between the
target features s* and the actual ones s:

e(t) � s(I(t),πi, πe) − s*(t), (1)

where πi and πe are the intrinsic and extrinsic parameters of the
camera, respectively, and I(t) is the actual image. The vectors
s, s* ∈ R3Nf , where Nf is the number of features, contain the 3D
locations of the actual and target features pi and p*i , respectively,
thus

s � [ p1 p2 . . . pNf ]T (2)

s* � [ p*1 p*2 . . . p*Nf
]T . (3)

The algorithm minimizes the error (Eq. 1) by controlling the
camera linear and angular velocity with the following law

vc(t) � −λL(t)e(t), (4)

where vc is the 6D camera twist, L is the interaction matrix, and
λ> 0 is the control gain (Marchand et al., 2005).

Commonly, s*(t) � s* is constant. This means applying a step
reference to the control algorithm. To ensure stability, the higher
initial error imposes to use low gains. This issue is typically
overcome by using an adaptive gain which is lower when the error
is high and increases as the error declines. Such a solution implies
a slower motion in the initial phase. To speed-up the motion,
while ensuring stability, we propose to use a high constant gain
while applying a time-varying reference s*(t) obtained by
interpolating each feature between the initial value s(I(0)) and
the target one s* in a give time tf . The interpolation is obtained by
applying the same time-varying rigid body transformation to
each feature, i.e.,

~p*i(t) � T(t)~pi(0), i � 1, . . . ,Nf (5)

being ~p the vector of homogeneous coordinates of the point p.
T(t) is a time-varying homogeneous transformation matrix such
that T(0) � I and T(tf )~pi(0) � p̃

*
i . Thus, T(t) is obtained by a

linear interpolation between T(0) and T(tf ) in translation and
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quaternion rotation. This choice implies that the initial error
e(0) � 0 and e(t) has a bell-like shape.

The homogeneous transformation matrix T(tf ) can be found
by solving the following problem

min
T

1
2
∑
Nf

i�1

������T~pi(0) − p̃
*

i

������
2

. (6)

We adopt the Ceres2 solver to solve this optimization problem
and, to ensure that T is a homogeneous transformation matrix,
we parametrize it with a position vector and a unit quaternion.

The keypoint matching algorithm of the ViSP library is used to
find only the initial features s(I(0)) and the corresponding target
features s*, then the keypoint tracking algorithm of the library
tracks the actual feature in real-time yielding s(I(t)). The
matching algorithm is based on the texture information of the
object and, if the object has the same texture (such as a drawings
or text) in two different locations, the matching algorithm could
wrongly match two keypoints of these two locations (an example
is shown in the top picture of Figure 2). When this happens there
is one or more i such that the residual in Eq. 6 has a value higher
than the required accuracy εv , i.e.,

∃i :
������T~pi(0) − p̃

*

i

������> εv. (7)

If condition (Eq. 7) is detected, our algorithm does not remove all
the features that meet the condition, but it removes only the feature
with the highest residual and reiterates the optimization algorithm by
solving (Eq. 6) again. This is helpful because in the next iteration,

without the removed feature, the optimization algorithm will find a
solution with a lower residual on the other features and the condition
(Eq. 7) may not be satisfied anymore; in this case the algorithm is
stopped. In the end, all the mismatched features are removed (see the
bottompicture ofFigure 2). The accuracy achieved by the algorithm is
relevant to the successful execution of the task by the robot after the
handover. For instance, if the robot needs to execute pivoting
maneuver, i.e. let the object rotate in-hand so as to reach a vertical
orientation, the grasping point needs to be above the CoG otherwise
the object would not be vertical at the end of the maneuver. Based on
our experience, we estimate that the grasping point should be in a
2mm ball located on the vertical line above the CoG. For this reason,
we set εv � 0.002m m. We verified that the algorithm is able to
achieve such accuracy on the object in Figure 2 which is challenging
for thematching algorithm because it has two different faces with very
similar textures.

2.2 Grip Force Control
The control algorithm exploits the data provided by force/tactile
sensors mounted on the fingertips, which can measure the 6D
contact wrench (Costanzo et al., 2019). Each fingertip is a soft
hemisphere with a stiffness and a curvature radius smaller than
those of the handled object, hence the contact area is
approximately a circle with radius ρ and the pressure
distribution is axisymmetric. Under these assumptions, the
grip force fn is related to the maximum tangential and
torsional frictional loads by the relationships

ftmax � μfn,
τnmax � μξδf c+1n ,

(8)

where µ is the dry friction coefficient, depending on the object
surface material, ξ is a parameter depending on the pressure

FIGURE 2 | Example of matched features without (top) and with (bottom) the feature removing algorithm. The images on the right show the 3D printed calibration
fingers mounted on the gripper grasping the object in the desired location.

2Sameer Agarwal and Keir Mierle and Others (2021). Ceres Solver. Available at:
http://ceres-solver.org (Accessed April 20, 2021).
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distribution, while δ and γ are parameters depending on the soft
pad material only. It is well-known that the radius is related to the
grip force as ρ � δf cn (Xydas and Kao, 1999), where the two
parameters can be estimated through an experimental procedure
described by Costanzo et al. (2020b). According to the Limit
Surface (LS) concept (Howe and Cutkosky, 1996), a sliding
cannot occur if the external load (ft , τn) applied to the object
is internal to the LS (the blue area of Figure 3). The LS can be
enlarged by increasing the grip force fn. This way, given the
measured load (ft , τn), it is possible to compute the minimum
grip force to hold the object fnLS. The method for this computation
can be found in (Cavallo et al., 2020). However this grip force can
balance constant loads only, while in dynamic conditions,
i.e., with time-varying loads and in case of non negligible
accelerations, an additional grip force is needed. This can be
computed, based on a dynamic model of the instantaneous
rotational motion of the object about the Center of Rotation
(CoR), via the nonlinear observer

_ζ � ω − σ0
g(fn, c) ζ |ω| (9)

_ω � l( − σ0ζ − σ1(fn, c)ω + y), (10)

where ζ is the internal LuGre state (Canudas de Wit et al., 1995)
and ω is the estimated slipping velocity. The function g(fn, c) �∣∣∣∣∣cftLS∣∣∣∣∣ + ∣∣∣∣τnLS∣∣∣∣ represents the maximum dry friction torque about
the CoR, it depends on the normal load and on the CoR position
c, which can be estimated via an algorithm that can be found in
(Cavallo et al., 2020). The term σ0ζ is the actual dry friction being
σ0 the stiffness of the microasperities of the contact surfaces; y �

τn − cft is the generalized torque measured at the fingertip about
the CoR axis and l is the observer gain. As soon as

∣∣∣∣y∣∣∣∣> g(fn, c), a
slipping velocity ω builds up. The viscous friction function σ1
depends on the area of the contact surface, i.e., (Costanzo, 2020)

σ1(fn, c) � πρ4βa(c
2

ρ2
+ 1
2
), (11)

where βa is the viscous friction coefficient per area unit (Shkulipa
et al., 2005), that can be estimated with the same exploration
procedure used to estimate the dry friction coefficient μ, i.e., by
rubbing the object at constant velocity.

The methods described above are used to design a grasp
controller for computing the grip force to avoid object
slippage, the so-called slipping avoidance (SA) control
modality, used in the handover strategy described in Section
3. The grip force is the superposition of two components, namely,

fn � fnLS + fnd , (12)

where fnLS and fnd are the so-called static and dynamic
components, respectively. fnd is aimed at counteracting time-
varying external disturbances, such as the inertial forces that arise
during the giver release and object transportation phases. It is
computed by a linear control action on the estimated slipping
velocity ω with the aim to regulate it to zero. The two actions can
be activated separately depending on the specific phase of the
handover task. When both actions are present the control mode is
called dynamic mode, when the dynamic action is switched off,
the control mode is called static mode. The activation strategy of
the two modes is described in detail later on in the paper.

FIGURE 3 | Limit Surface with maximum tangential (ftmax) and torsional (τnmax) friction; c is the position of the instantaneous CoR; (ftLS , τnLS) is the maximum external
load that the friction can withstand, with the given grip force fn.
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Moreover, to ensure that a contact is always present so as the
tactile sensors are able to measure, when the SA is active, the grip
force is lower bounded by a minimum value depending on the
accuracy and signal to noise ratio of the force/tactile sensor.

In the pre-handover phase, another control modality can be
useful to change the relative orientation between the gripper and
the object in a configuration that is more suitable for the
exchange. This modality is called pivoting and its aim is to
bring and keep the object in a vertical position, i.e., with zero
frictional torque. Again, the LS method can show that the grasp
force to achieve this objective coincides with the Coulomb friction
law, i.e., fn � ft/μ. Thus, the grasp force is brought from its current
value to this limit by applying the first order linear filter in the
discrete time k

fn(k + 1) � (1 − α)fn(k) + αft(k)
μ

, (13)

where the value α sets the time constant of the filter and ft(k) is
the measured tangential force. The value of α changes the velocity
of the pivoting maneuver and should be chosen depending on the
bandwidth of the available force-controlled gripper. The
interested reader can find more details about the algorithm in
(Costanzo et al., 2020b; Cavallo et al., 2020).

3 HANDOVER STRATEGY

The assumptions underpinning the proposed approach and the
requirements of the application tackled in this paper are
summarized as follows:

• We do not investigate the signaling problem, we assume that
the receiver already agreed on getting the object from the giver

• The receiver already knows which object the giver is passing;

• Both the agents have the capability to withstand the weight of
the object;

• The objects to exchange are texture-rich and with a cylinder-
like or parallelepiped-like shape;

• A simple handover protocol is known to the agents based on
haptic cues;

• We use parallel grippers;
• The handover location is decided by the giver;
• We are not allowed to sensorize, e.g., using ARTags, neither the
objects or the human;

• We are allowed to use only sensors on board the robot, no
external sensor can be used;

• In the R2R case no communication between the robot control
units is allowed.

Under these assumptions, which seem reasonable in the in-
store logistics settings where performance and cost should be well
balanced, with only visual and tactile information we perform
natural handover operations.

For each handover operation, H2R, R2H and R2R, we use
different strategies. Each one corresponds to a FSM represented
in Figure 4 and described hereafter.

3.1 H2R Operation
In the H2R operation, the human holds an item and the robot has
to grasp it from the human hand. The strategy is represented in
the top-left FSM diagram of Figure 4. In the Init state the robot
activates the visual servoing algorithm, described in Section 2.1,
to reach the handled object in the grasp configuration
corresponding to the target image. During this phase, the
human can move and the robotic receiver tracks the object by
complying with the dynamic behavior of the giver. When the time
varying feature trajectory (Eq. 5) terminates and the visual
servoing error norm is below the desired accuracy εv , the

FIGURE 4 | FSMs for the handover algorithms: name of the states in boldface italic.
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grasp location is considered reached and the gripper is
commanded to close the fingers. As soon as contact is
established with the minimal grip force, the visual servoing
controller is disabled and the SA is activated in dynamic mode
(Grasp state). Note that, during the gripper closing (before the SA
activation), the visual algorithm is still active because the human
operator can move the object, which makes the handover
operation fluid. As soon as the SA is activated, the robot is
commanded to move backward (Move back state), this gives a
haptic cue to the human that feels a tangential force in the
direction of the robot displacement, this cue means that the robot
has securely handled the object and the human can release it.

3.2 R2H Operation
In the R2H operation, a robot intends to pass an held object to
a human. The algorithm is described by the top-right FSM
diagram of Figure 4. During the Init state the system is in the
pre-handover phase, the gripper is controlled in SA dynamic
mode, the robot feels the object weight by means of the
sensorized fingertips; the weight is represented by the force
component f wz that the sensor measures along the z-axis of the
world frame (assumed aligned and opposed to the gravity).
Note that, before activating the SA mode, the gripper is first
controlled with a pivoting mode in order to present the object
to the receiver with a vertical orientation. This expedient
allows the receiver to grasp the object with no torsional load,
thus requiring a minimal effort in terms of grip force. Once
the weight f wz,i is acquired, the robot waits for the human to
initiate the physical handover phase (Wait state). During the
handover, the object is held by both the robot and the human
and the load is shared by the two agents. In the Wait state, the
slipping avoidance algorithm is in dynamic mode (Eq. 12)
and it counteracts any disturbance, i.e., any external force or
torque applied to the object. When the human receiver starts
grasping the object holding part of the load, the robot feels
less weight and it enters into the Sharing state. This is done by
comparing the initial measured weight f wz,i with the actual
force component f wz , by checking the condition

f wz > ]sf wz,i, 0< ]s < 1, (14)

where the scale factor ]s establishes the amount of weight the
human has to withstand before the robot enters the sharing state.
In other words, when condition (Eq. 14) is satisfied, the robot
assumes that the human has the intention to share the object
weight and thus it believes that the handover can take place safely.
Note that the sign of the inequality takes into account the
direction of the z-axis, opposed to the gravity, thus the
measured force f wz,i is negative. In the Sharing state the system
is in the physical handover phase and the human is helping the
robot to hold the object. According to the feedback given by
different subjects during several trials, we decided to switch off
the SA dynamic control action (static mode) because the subjects
complained for an annoying vibration felt during the load sharing
caused by the controller reaction to the slight trembling of the
receiver. In this state, the FSM takes into account the possibility
that the human does not have the intention to take the object

anymore. This event is detected, similarly to (Eq. 14), by checking
the condition

f wz < ]wf wz,i, 0< ]w < 1, (15)

where the scale factor ]w > ]s establishes the amount of weight the
robot has to withstand again before returning in the wait for the
Sharing state. In addition, to avoid useless switches between the
Waiting and the Sharing states, the parameters ]s and ]w are
selected such that (]w − ]s)

∣∣∣∣f wz,i∣∣∣∣ is greater than the noise level
affecting the measured force, being

∣∣∣∣f wz,i∣∣∣∣ the weight of the lightest
object. When the condition (Eq. 15) is verified, the FSM returns
into the Wait state. Still in the Sharing state, the FSM waits for a
haptic cue informing the robot that the human is pulling the
object. Once again, this is done by measuring the forces at the
fingertips. When the cue is detected, the robot opens the gripper
and the handover is complete. The haptic cue is detected if the
following condition holds

f wz >ψz ∨ fpull >ψp, ψz , ψp > 0, (16)

where fpull is the measured external force along the pulling
direction, defined as the projection of the y axis of the grasp
frame on the xy-plane of the world frame (see the frame in the left
picture of Figure 1). The first part of the condition means that the
receiver is pulling the object upwards, while the second part
means that the receiver is pulling the object out of the gripper
(note that in case of a pushing force, fpull is negative). The
parameters ψz and ψp are thresholds selected by testing the
algorithm using various threshold values with 10 human
volunteers (5 male and five female) that gave us feedback on
their sensation during the pulling phase. It is important to
underline that the condition (Eq. 16) is checked only in the
Sharing state, this implies that the giver releases the object only if
the receiver shares a sufficient amount of weight and he/she pulls
the object. If a pulling force is applied without any load sharing,
the robot keeps the object firmly with the SA grasp control.

3.3 R2R Operation
The handover strategy for the R2R case is executed by two FSMs,
one for the giver and one for the receiver, depicted in the bottom
diagram of Figure 4. One might think to reuse the same strategy
devised for the H2R case for the robot receiver and the same
strategy devised for the R2H for the robot giver. However, this
approach cannot handle the case the selected grasp configuration
to be achieved via the visual servoing is not compatible with the
maximum grip force of the receiving gripper. This might happen
if the grasp pose is such that the gravity torsional load requires a
grip force higher than the gripper capacity, i.e. the grasp location
is too far from the center of gravity. When the giver is a human,
this exception is easily handled by the giver exploiting his/her
manipulation dexterity and the ability to coordinate visual and
tactile feedback to anticipate the failure event. Therefore, in the
R2R case we use the tactile feedback of the giver, in charge of the
object safety, to anticipate the slipping event that would happen if
the receiver grip force, required by the slipping avoidance,
exceeded the gripper limit. Exploiting the a priori knowledge
contained in the soft contact model and the tactile perception
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data only, the giver is able to foresee this failure event and reacts
to avoid it, still using haptic communication only, as detailed in
the following.

The giver in the Init state is grasping an object with the grasp
control in SA mode, then it records the grip force fn,i necessary to
hold the object in the current configuration. In this pre-handover
phase, the giver brings the object inside the field of view of the
receiver camera, so that this starts tracking the object to grasp it.
The giver is now waiting for a haptic cue provided by the receiver
that has the intention to take the object (Wait state). The receiver
executes a short backward and forward motion by first pulling the
object to generate a pulling force fpull,g detected by the giver
fingers, and then it returns to the initial position, so as to avoid
keeping an external load that the giver grip force counteracts. The
detecting condition of the cue is

fpull,g >ψp, (17)

where the threshold ψp is the same used in the R2H case. The
giver is now in the release state and it starts opening the gripper by
setting zero grasp force with a rate of 0.3 N/s, value tuned in
combination with the response time of the slipping velocity
observer. While the grip force is decreasing, the robot checks
if the grip force reached zero and the following condition

∣∣∣∣ϑg ∣∣∣∣ �
∣∣∣∣∣∣∣ ∫

t

0
ωg(η)dη

∣∣∣∣∣∣∣>ψϑ, (18)

where ωg(t) is the object velocity with respect to the giver
fingertips estimated by the observer in (Eq. 9), (Eq. 10) with
the measured torque y on the giver gripper. ψϑ is a threshold that
establish the maximum rotational slippage that can be accepted
for the execution of task following the handover operation. Such a
condition is aimed at detecting a slipping event of the commonly
held object. Hence, to avoid actual slippage it is sufficient to use in
the observer a value of the friction coefficient µ slightly lower than
the actual one. This corresponds to consider a lower maximum
friction torsional moment g(fn, c) and, in turn, a contracted LS,
i.e., a virtual LS instead of the real one. This causes an estimated
virtual slipping velocity that anticipates the slipping event, which
would happen by continuing to reduce the grip force. This means
that the actual load would cause a slippage at the giver contact
surfaces which indirectly indicates that the receiver cannot safely
withstand the load. This way ϑg takes on the meaning of a virtual
sliding angle. If the first condition on the grip force is verified
before condition (Eq. 18), then the task of the giver ends, since the
object is fully held by the receiver because no significant slippage
occurred during the gripper opening. On the other hand, if
condition (Eq. 18) holds with a non zero grip force, it means
that a significant (virtual) slippage is happening and thus the
receiver is trying to hold the object in a wrong configuration.
Then, the giver grasp control is set to SA mode again, the robot
giver sends a haptic cue (short forward and backward motion) to
inform the receiver of the likely failure and, finally, it goes back to
the Wait state with a grasp control that keeps the grip force to the
initial one fn,i. From this state, different recovery strategies can be
devised, e.g., re-plan the receiver grasp. In this paper, where we
focus on the possibility to catch an exception only using tactile

feedback and a model, we assume to know a new grasp
configuration for the receiver compatible with the gripper
capability and the receiver will move toward this new grasp
location.

The robot receiver in the Init state, with the grasp control in
SA mode, sends a haptic cue to the giver, again with the short
backward and forward motion. Then, it comes to a Wait state
where the following conditions are checked:

fpull,r < − ψp (19)

fpull,r ≥ − ψp ∧ |ωr|>ψω, (20)

where fpull,r and ωr are the pulling force and the slipping velocity
detected by the receiver, respectively, ψω is the threshold on the
slipping velocity necessary to detect the slipping event. If the first
condition is verified, the receiver detects the cue sent by the giver
informing it of the possible failure, thus it enters the Regrasp state
to handle this exception. In our case we move the receiver toward
the giver to grasp the object closer to the center of gravity. This
way, a lower grip force is necessary to hold the object in its
orientation, hence the receiver can try again to take the object
from the giver re-starting from the Init state. If the second
condition, alternative to the first one, holds, then the handover
is successful and the task ends.

4 EXPERIMENTS

The handover algorithms described so far have been tested in a
number of experiments carried out on the setup described in
Section 4.1, testing all three handover operations H2R, R2H
and R2R.

4.1 Experimental Setup
The experimental setup is composed of two robots (Figure 1), a
Kuka LBR iiwa seven equipped with a WSG-50 gripper, and a
Yaskawa Motoman SIA5F equipped with a WSG-32 gripper. The
finger motion of both grippers is velocity controlled via a ROS
interface that communicates with the grippers through a LUA script
running on the gripper MCU. Because of the LUA interpreter, the
velocity commands can be sent to the grippers only with a rate of
50 Hz, this limits the performance of the grasp force controller. Each
gripper is equipped with two SUNTouch sensorized fingertips
(Costanzo et al., 2019) that are able to measure the 6D contact
wrench. The method to extract the external wrench applied to the
object from the single finger contact wrench vectors is explained in
(Costanzo et al., 2020b). The sensors communicate with the ROS
network via a serial interface at a sampling rate of 500 Hz. Themean
error on themeasured force is 0.2 N, hence we set the lower bound of
the SA algorithm to a conservative value of 0.5 N. The grip force is
controlled via a low-level force loop that acts on the finger velocity to
track a reference grip force with a typical response time of 0.15 s,
hence the time constant of the filter in (Eq. 13) is set to 0.33 s
corresponding to the value of α reported in Table 1 considering the
sampling rate of 500 Hz of the digital implementation. The iiwa
robot is also equipped with an Intel D435i RGB-D camera, mounted
in an eye-in-hand configuration, used for the visual servoing phase.
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Two sets of experiments have been carried out. The first concerns
H2R and R2Hhandover operations performed in a typical pick-and-
place task in a collaborative shelf replenishment scenario of a retail
store. The setting consists of shelf layers with a clearance of 15 cm.
Each shelf has different facings to place the objects detached by 5 cm
height separators. A human operator hands an object over to the iiwa
robot (H2R), which then places it on a shelf layer. The placing
motion is autonomously planned off-line using the method
proposed by Costanzo et al. (2021) and the solution found to
accomplish the task might include pivoting operations (pivoting
the object inside the fingers or rotating the gripper about the
grasping axis while keeping the object fixed). The method allows
the robot to plan off-line even if the starting robot configuration is
likely different at run time since the object is passed by a human and
it is not picked from a fixed location. After the place task, the robot is
asked to re-pick the same object and hands it over to the human
(R2H). This sequence has been selected simply because it allows us to
test both handover operations with a human.

The second set of experiments concerns the R2R handover
operation. The SIA5F robot is commanded to pick an object in a
given position and to pass it to the iiwa robot. The SIA5F is controlled
according to the R2R Giver FSM, while the iiwa is controlled via the
R2R Receiver one. The two robots communicate only via haptic
feedback through the protocol defined in the FSMs. The R2R
experiments have been carried out with two different objects.

The quantitative results reported in the next sections refer to
experiments carried out with three different objects, a plastic
bottle full of liquid (Object A), the same bottle but empty (Object
B), and a cardboard box (Object C). Moreover, in the
Supplementary Video S1, there are an extra R2R experiment
performed with a resin block (Object D) and an extra H2R
experiment carried out with a cardboard cube (Object E).
Object D has been used since it is fully rigid and is made of
the same material used in the calibration of the tactile sensors,
hence the experiment runs in ideal conditions highlighting details
of the physical handover phase. Object E is challenging to
handover, since it is small compared to the robot fingers and

the human should present it in a way depending on the pick-and-
place task, in particular on the placing action the robot has to do.
Table 1 shows all the objects used in the experiments with their
friction parameters together with all parameters necessary to run
the algorithms that do not depend on the specific object. Note
that different friction parameters have been used for iiwa and
SIA5F robots since the fingers are different.

4.2 H2R and R2H Experimental Results
Figure 5 shows the snapshots of the first experiment execution. In the
beginning, the humanbrings the objectA inside the field of view of the
robot camera and the robot goes toward it by using the visual servoing
algorithm (t � 0 s). Before the grasp, the human rotates the object (t �
2 s) by changing its pose during the robot motion to reach the object.
We intentionally introduced this dynamic change to show the
capability of the algorithm to reach the target grasp point (t � 6 s)
even in case of rapid motions of the human giving the object to the
robot. This feature alleviates the cognitive burden of the giver, who
does not need to focus on staying firm in the handover location
waiting for the robot. Figure 6 shows the visual servoing error during
this phase, the error starts from zero with a bell-like shape thanks to
the time-varying reference features s*(t) described in Section 2.1.
This strategy permits a fast (but still smooth) convergence of the
algorithm. Between t � 3 s and t � 4 s the error variation corresponds
to the object rotation by the human, after that the error decreases and
then, around t � 5 s the human moves again just before the robot
grasp and the error increases, but still the grasp is successful. The error
does not decrease again because the contact has been established and
the physical handover phase begins.

Figure 7 shows the forces and torsional moment as well as
the estimated sliding velocity during the whole experiment,
while the top plot of Figure 8 shows a detail of the H2R
physical handover phase. The first grasp force peak depends on
the impact velocity between the fingers and the object, then at
t � 6 s the SA mode is activated and the receiver automatically
chooses the grasp force. Here the load sharing phase starts, and
both the agents hold the object weight. The weight of object A is

TABLE 1 | Parameters of the algorithm (SI units). The friction model parameter μ, δ, and c appear in Eq. 8 and βa in Eq. 11. Note that: object mass is not used in the
algorithms, it is reported for the reader’s convenience in the interpretation of the results; the parameter δ is object independent for rigid objects, for partially deformable
objects it has to be estimated for each object; object B is the same as object A but the bottle is empty; the parameter α is reported for a sampling rate of 500 Hz.

Object dependent parameters

Object A Object B Object C Object D Object E

iiwa SIA5F iiwa SIA5F

μ 0.85 0.85 0.57 0.65 0.60 0.65 0.60
βa 3.47 108 3.47 108 2.61 108 4.61 108 3.47 108 1.73 ·109 3.47 108

δ 1.83 10–3 1.83 10–3 1.83 10–3 4.80 10–3 1.83 10–3 3.8 10–3 1.83 10–3

Mass 0.290 0.103 0.082 0.099 0.172

Object independent parameters

l σ0 α γ λ ϵv ]s ]w ψz ψp ψϑ ψω

4,000 50 0.006 0.254 1.0 0.002 0.5 0.98 1.0 0.6 0.087 0.05
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290 g, but in the sharing phase (around t � 6.5 s) the robot feels
a tangential load ft corresponding to less than half of the weight
(107 g), and, in turn, the slipping avoidance algorithm applies a

grasp force of about 1.5 N, demonstrating how sensitive is the
grip force modulation implemented by the SA controller. At
about t � 7 s the robot moves back to give a haptic cue to the

FIGURE 5 | First experiment (object A): H2R handover operation (top row), object placing phase (middle row), R2H handover operation (bottom row).

FIGURE 6 | First experiment (Object A): visual servoing tracking error during the H2R operation.

FIGURE 7 | First experiment (Object A): forces and torsional moment measured by the robot during the whole task execution (top plot); estimated slipping velocity
(bottom).
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human giver. The human releases its grasp and the robot
withstands all the weight as shown in Figure 8-top. The
duration between the end of the sharing phase (when the
robot gives the cue) and the end of the object passing (when
all the load is withstood by the robot) is about 400 ms, that is in
line with the passing time observed in Human-to-Human
handovers (Mason and MacKenzie, 2005; Chan et al., 2012;
Endo et al., 2012). During the passing phase we observe two
peaks in the velocity profile, a first smaller peak at about t �
7.1 s corresponds to the robot cue, then, at about t � 7.5 s there
is another peak that corresponds to the giver release. The
velocity increases because the robot accelerates to go in the
placing pose. The pattern of the slipping velocity which does
not go to zero between the giver release and the robot
acceleration phases indirectly demonstrates the fluidity of
the robot motion without dead times. After the handover,
all the weight is withstood by the robot, the sensors measure
a tangential force ft of about 3.1 N including both the weight
and the inertial forces, and the slipping avoidance algorithm
regulates the grasp force at about 5 N.

After the H2R phase the robot moves to place the object on the
top shelf from t � 7.5 s to t � 22 s (see also Figure 5). The robot
motion causes a variation of the gravity torsional load on the
fingertips, this, in turn, causes an increment of the grasp force
applied by the slipping avoidance algorithm. As shown in the
SupplementaryVideo S1, at the end of the placing action, the robot
executes a pivoting maneuver, autonomously planned, to reorient
the object in a vertical configuration to correctly place it. This event
is visible in the estimated slipping velocity signal (see the bottom
plot of Figure 7) at about t � 16 s where the observer catches the
velocity profile corresponding to the pivoting maneuver.

The same experiment presents also the dual case, where the
robot takes an object from the shelf and gives it to a human. At
about t � 30 s the robot picks again the object from the shelf and
presents it to the human operator according to the strategy
encoded in the R2H FSM. As shown in the Supplementary
Video S1, before activating the FSM, the robot performs a

pivoting maneuver to present the object in a vertical
configuration, this way all the gravity torque accumulated
during the robot motion vanishes (see Figure 7, t � 42 s).

The results of the R2H phase are detailed in the bottom
plot of Figure 8. From t � 44 to t � 54 s the FSM is waiting for
the Sharing state and counteracts the external disturbances
intentionally applied by the human who touches repeatedly
the object held by the robot. The plot shows the two signals
used in the FSM, i.e., the pulling force fpull and the force
aligned with the gravity vector f wz . During this time interval,
the operator applies disturbances along fpull, f wz and on the
torque τn, without entering in the Sharing state. The SA
algorithm counteracts these disturbances by modulating
the grip force fn. At t � 54.5 s the human holds the object
and partially withstands its weight. The robot feels this event
because f wz decreases and the FSM enters in the Sharing state
since condition (Eq. 14) is verified. At t � 57 s, the human
decides to not get the object and releases it without pulling,
thus the measured weight f wz increases again and,
automatically, due to the SA mode, the robot increases the
grasp force again. Finally, at about t � 59.6 s the human holds
the object again and the FSM enters in the Sharing state again.
This time, the human chooses to take the object and applies a
pulling force in the direction of f wz giving a cue to the robot,
detected by checking condition (Eq. 16), which releases the
grasp in about 360 ms.

The same experiment has been repeated with the same
bottle but now empty (Object B). It is worth mentioning that
no vision system is able to estimate the weight of a non-
transparent closed bottle and without the force/tactile
sensing is not possible to distinguish between Object A
and Object B. The experiment description is identical to
the previous one and the full task is reported in Figure 9.
The top plot of Figure 10 shows the detail of the H2R phase.
The plot is qualitatively similar to the previous experiment,
but now the measured tangential force and the resulting
grasping force are lower. In particular, at the end of the

FIGURE 8 | First experiment (Object A): detail of the H2R physical handover phase (top); detail of the R2H physical handover phase (bottom).
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H2R the robot feels a tangential force of about 1 N which
corresponds to the object weight of 103 g. In turn, the
grasping force fn is automatically set by the slipping
avoidance algorithm to a value of 2.4 N which depends on
the friction coefficient µ. The bottom plot of Figure 10 shows
the detail of the R2H phase. Once again, from t � 44 to t � 54 s,
the R2H FSM is in the Wait state and counteracts the
disturbances on the measured force and torque. At t � 55 s
the human holds the object and the FSM enters in the Sharing
state. Then, the human decides to keep the object giving the
haptic cue to the robot by pulling it. As soon as the condition
(Eq. 16) is verified, at t � 56.2 s, the robot releases the object.

The third experiment of this subsection involves object C
and it is reported in Figure 11. The H2R and R2H handover
phases (Figure 12) are very similar to those of the previous
experiments and we will not discuss them further. This
experiment is presented to show the particular pick-and-

place task, because the handover grasp configuration is not
compatible with the place location due to the tight clearance
between two shelves. As shown in the Supplementary Video
S1, to execute the placing maneuver the robot uses the gripper
pivoting ability, again autonomously planned, i.e., the object
remains fixed while the gripper rotates about the grasping
axis. This happens from t � 20 to t � 25 s (see the estimated
sliding velocity in the zoom of the bottom plot of Figure 11).
After the placing the robot retreats. Then, it begins the new
pick-and-place task to make the R2H operation. The robot
picks the object again and, during its motion, the object
impacts the facing separator. This is caught by the slipping
avoidance algorithm that estimates a velocity peak at t � 36.4 s
and, in turn, increases the grasping force to counteract the
generated torsional moment τn, as evident in the top plot of
Figure 11. The rest of the task phases are the same of the
previous experiments.

FIGURE 9 | Second experiment (Object B): repetition of the first experiment using an empty bottle; forces and torsional moment measured by the robot during the
whole task execution (top plot); estimated slipping velocity (bottom).

FIGURE 10 | Second experiment (Object B): detail of the H2R physical handover phase (top); detail of the R2H physical handover phase (bottom).
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FIGURE 11 | Third experiment (Object C): forces and torque measured by the robot during the whole task execution (top plot); estimated slipping velocity
(bottom).

FIGURE 12 | Third experiment (Object C): detail of the H2R physical handover phase (top); detail of the R2H physical handover phase (bottom).

FIGURE 13 | Fourth experiment (object C): R2R operation.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 67299514

Costanzo et al. Handover Control

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


4.3 R2R Experimental Result
The R2R handover experiment has been carried out with
Object C. Figure 13 shows the snapshots of the experiment
execution, while the forces and torque as well as the estimated
slipping velocities of the giver (ωg) and of the receiver (ωr)
are reported in Figure 14. At t � 0 s the SIA5F grasps the
object in a given position and lifts it in SA mode. The grasp
controller applies a force of 11 N that is needed to counteract
the gravitational torque even if the object weight force is less
than 1 N. Then, the giver presents the object to the receiver
switching to the Wait state. The receiver starts moving
toward it guided by the visual servoing controller (t �
13 s). At t � 18 s the receiver starts grasping the object and
the physical handover begins. When the receiver completes
the grasp, the torsional load τn,g on the giver decreases, this, in
turn, causes a reduction of the giver grasp force fn,g (t � 20 s).
At t � 27 s the receiver decides to give the haptic cue to the
giver, which detects the event (Eq. 17) by checking condition
(Eq. 17). This is evident in the middle plot of Figure 14 where
fpull,g overcomes the threshold ψp. Then, the giver enters the
release state and starts releasing the object (t � 30 s). During
this phase (at t � 32 s), the grasp force declines such that the
giver foresees a virtual slipping by detecting the condition
(Eq. 18) since the virtual sliding angle

∣∣∣∣ϑg ∣∣∣∣ overcomes the
threshold ψθ � 0.087 rad. This way, the giver robot is able to
foresee a slipping event that would happen if it continued the
grip force decreasing to pass the object load to the receiver,
and this without any communication between the robots.
Therefore, the giver aborts the opening and comes back to
slipping avoidance mode. It sends an haptic cue to the
receiver communicating that it cannot support the object.
The receiver detects such event with the condition (Eq. 19)
and, as stated in Section 3.3, it moves toward the giver to
grasp the object closer to its center of gravity by a

displacement of 2.5 cm (Regrasp state). Assuming the
parallelepiped shape, the giver can move by applying a low
normal force of 1 N to avoid contact loss, and by letting the
fingers slide on the object surface. This is shown also in the
top plot of Figure 14 from t � 38 to t � 42 s when the observer
on the receiver estimates a sliding velocity ωr , which
corresponds to the translational sliding motion.

After the sliding phase, the receiver goes back to SA mode
and at t � 47 s, it sends again the cue to the giver to grasp the
object. This time, during the release phase from t � 50 to t �
55 s the variation on the virtual sliding angle estimated by the
giver ϑg does not overcame the threshold ψϑ and the giver
completely releases the object. From the receiver point of view,
the grasping force computed by the SA is mainly due to the
pulling force fpullr since the object weight is very small and the
torsional moment τn,r is negligible. Therefore, the lower the
pulling force the lower the grip force fn,r , until the receiver feels
a significant increment of the external torque τn,r (t � 58 s) and
a peak in the estimated velocity ωr . The velocity peak notifies
the receiver FSM that the handover task is complete [condition
(Eq. 20)], while both the velocity peak and the torque
increment are used by the SA algorithm to increase the
grasp force up to 12.5 N.

5 CONCLUSION

The experimental results reported in the paper give evidence to
the importance of the haptic perception during the handover
operations between humans and robots but even between robots
that communicate only through physical interaction. The force/
tactile perception enables reactive controllers to smartly modulate
the grip force during the physical handover phase, ensuring
successful handovers without object slippage. The proposed

FIGURE 14 | Fourth experiment (Object C): estimated slipping velocities of the giver and the receiver (top); forces and torque measured by the giver (middle plot);
forces and torque measured by the receiver (bottom plot).
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methods, based on physics models of the soft contact, have been
presented in the framework of an in-store logistic collaborative
scenario with a set of requirements and assumptions, and, in
particular, using parallel grippers. Nevertheless, satisfactory
results encourage us to investigate possible generalization to
more complex robotic grippers, which can enlarge the set of
objects that can be handled. We presented not only classical
experiments of human-to-robot handovers and vice versa, but
also a preliminary algorithm for robot-to-robot handover, that is
envisaged useful in a future where robots collaborate with each
other with simple communication channels, like haptic cues. The
current limitation is the assumption of objects with specific
shapes and the knowledge of the location of the re-grasp
point. Overcoming this limit requires methods to re-plan or
learn the re-grasping strategy.
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