222 research outputs found

    Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity

    Get PDF
    In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory processing in neocortical network models equipped with synaptic plasticity

    Processing of Feature Selectivity in Cortical Networks with Specific Connectivity

    Get PDF
    Although non-specific at the onset of eye opening, networks in rodent visual cortex attain a non-random structure after eye opening, with a specific bias for connections between neurons of similar preferred orientations. As orientation selectivity is already present at eye opening, it remains unclear how this specificity in network wiring contributes to feature selectivity. Using large-scale inhibition-dominated spiking networks as a model, we show that feature-specific connectivity leads to a linear amplification of feedforward tuning, consistent with recent electrophysiological single-neuron recordings in rodent neocortex. Our results show that optimal amplification is achieved at an intermediate regime of specific connectivity. In this configuration a moderate increase of pairwise correlations is observed, consistent with recent experimental findings. Furthermore, we observed that feature-specific connectivity leads to the emergence of orientation-selective reverberating activity, and entails pattern completion in network responses. Our theoretical analysis provides a mechanistic understanding of subnetworks’ responses to visual stimuli, and casts light on the regime of operation of sensory cortices in the presence of specific connectivity

    Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    Get PDF
    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model o

    Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    Get PDF
    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity

    Supervised Learning in Spiking Neural Networks with FORCE Training

    Get PDF
    Populations of neurons display an extraordinary diversity in the behaviors they affect and display. Machine learning techniques have recently emerged that allow us to create networks of model neurons that display behaviors of similar complexity. Here we demonstrate the direct applicability of one such technique, the FORCE method, to spiking neural networks. We train these networks to mimic dynamical systems, classify inputs, and store discrete sequences that correspond to the notes of a song. Finally, we use FORCE training to create two biologically motivated model circuits. One is inspired by the zebra finch and successfully reproduces songbird singing. The second network is motivated by the hippocampus and is trained to store and replay a movie scene. FORCE trained networks reproduce behaviors comparable in complexity to their inspired circuits and yield information not easily obtainable with other techniques, such as behavioral responses to pharmacological manipulations and spike timing statistics

    The interplay between somatic and dendritic inhibition promotes the emergence and stabilization of place fields

    Get PDF
    During the exploration of novel environments, place fields are rapidly formed in hippocampal CA1 neurons. Place cell firing rate increases in early stages of exploration of novel environments but returns to baseline levels in familiar environments. Although similar in amplitude and width, place fields in familiar environments are more stable than in novel environments. We propose a computational model of the hippocampal CA1 network, which describes the formation, dynamics and stabilization of place fields. We show that although somatic disinhibition is sufficient to form place fields, dendritic inhibition along with synaptic plasticity is necessary for place field stabilization. Our model suggests that place cell stability can be attributed to strong excitatory synaptic weights and strong dendritic inhibition. We show that the interplay between somatic and dendritic inhibition balances the increased excitatory weights, such that place cells return to their baseline firing rate after exploration. Our model suggests that different types of interneurons are essential to unravel the mechanisms underlying place field plasticity. Finally, we predict that artificially induced dendritic events can shift place fields even after place field stabilization

    Population coupling predicts the plasticity of stimulus responses in cortical circuits

    Get PDF
    Some neurons have stimulus responses that are stable over days, whereas other neurons have highly plastic stimulus responses. Using a recurrent network model, we explore whether this could be due to an underlying diversity in their synaptic plasticity. We find that, in a network with diverse learning rates, neurons with fast rates are more coupled to population activity than neurons with slow rates. This plasticity-coupling link predicts that neurons with high population coupling exhibit more long-term stimulus response variability than neurons with low population coupling. We substantiate this prediction using recordings from the Allen Brain Observatory, finding that a neuron’s population coupling is correlated with the plasticity of its orientation preference. Simulations of a simple perceptual learning task suggest a particular functional architecture: a stable ‘backbone’ of stimulus representation formed by neurons with low population coupling, on top of which lies a flexible substrate of neurons with high population coupling

    Memory's gatekeeper: The role of PFC in the encoding of congruent events

    Get PDF
    Theoretical models conventionally portray the consolidation of memories as a slow process that unfolds during sleep. According to the classical Complementary Learning Systems theory, the hippocampus (HPC) rapidly changes its connectivity during wakefulness to encode ongoing events and create memory ensembles that are later transferred to the prefrontal cortex (PFC) during sleep. However, recent experimental studies challenge this notion by showing that new information consistent with prior knowledge can be rapidly consolidated in PFC during wakefulness and that PFC lesions disrupt the encoding of congruent events in the HPC. The contributions of the PFC to memory encoding have therefore largely been overlooked. Moreover, most theoretical frameworks assume random and uncorrelated patterns representing memories, disregarding the correlations between our experiences. To address these shortcomings, we developed a HPC-PFC network model that simulates interactions between the HPC and PFC during the encoding of a memory (awake stage), and subsequent consolidation (sleeping stage) to examine the contributions of each region to the consolidation of novel and congruent memories. Our results show that the PFC network uses stored memory "schemas" consolidated during previous experiences to identify inputs that evoke congruent patterns of activity, quickly integrate it into its network, and gate which components are encoded in the HPC. More specifically, the PFC uses GABAergic long-range projections to inhibit HPC neurons representing input components correlated with a previously stored memory "schema," eliciting sparse hippocampal activity during exposure to congruent events, as it has been experimentally observed

    Modelling plasticity in dendrites: from single cells to networks

    Get PDF
    One of the key questions in neuroscience is how our brain self-organises to efficiently process information. To answer this question, we need to understand the underlying mechanisms of plasticity and their role in shaping synaptic connectivity. Theoretical neuroscience typically investigates plasticity on the level of neural networks. Neural network models often consist of point neurons, completely neglecting neuronal morphology for reasons of simplicity. However, during the past decades it became increasingly clear that inputs are locally processed in the dendrites before they reach the cell body. Dendritic properties enable local interactions between synapses and location-dependent modulations of inputs, rendering the position of synapses on dendrites highly important. These insights changed our view of neurons, such that we now think of them as small networks of nearly independent subunits instead of a simple point. Here, we propose that understanding how the brain processes information strongly requires that we consider the following properties: which plasticity mechanisms are present in the dendrites and how do they enable the self-organisation of synapses across the dendritic tree for efficient information processing? Ultimately, dendritic plasticity mechanisms can be studied in networks of neurons with dendrites, possibly uncovering unknown mechanisms that shape the connectivity in our brains

    Gap junction plasticity as a mechanism to regulate network-wide oscillations

    Get PDF
    Cortical oscillations are thought to be involved in many cognitive functions and processes. Several mechanisms have been proposed to regulate oscillations. One prominent but understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex between GABAergic interneurons. Moreover, recent experiments indicate their strength can be modified in an activity-dependent manner, similar to chemical synapses. We hypothesized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscillations in the cortex. We developed a computational model of gap junction plasticity in a recurrent cortical network based on recent experimental findings. We showed that gap junction plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight balance between two network states: asynchronous irregular activity and synchronized oscillations. This homeostatic mechanism allows for robust communication between neuronal assemblies through two different mechanisms: transient oscillations and frequency modulation. This implies a direct functional role for gap junction plasticity in information transmission in cortex
    corecore