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Abstract

Cortical oscillations are thought to be involved in many cognitive functions and processes.

Several mechanisms have been proposed to regulate oscillations. One prominent but

understudied mechanism is gap junction coupling. Gap junctions are ubiquitous in cortex

between GABAergic interneurons. Moreover, recent experiments indicate their strength can

be modified in an activity-dependent manner, similar to chemical synapses. We hypothe-

sized that activity-dependent gap junction plasticity acts as a mechanism to regulate oscilla-

tions in the cortex. We developed a computational model of gap junction plasticity in a

recurrent cortical network based on recent experimental findings. We showed that gap junc-

tion plasticity can serve as a homeostatic mechanism for oscillations by maintaining a tight

balance between two network states: asynchronous irregular activity and synchronized

oscillations. This homeostatic mechanism allows for robust communication between

neuronal assemblies through two different mechanisms: transient oscillations and frequency

modulation. This implies a direct functional role for gap junction plasticity in information

transmission in cortex.

Author summary

Oscillations of neural activity emerge when many neurons repeatedly activate together

and are observed in many brain regions, particularly during sleep and attention. Their

functional role is still debated, but could be associated with normal cognitive processes

such as memory formation or with pathologies such as schizophrenia and autism. Power-

ful oscillations are also a hallmark of epileptic seizures. Therefore, we wondered what

mechanism could regulate oscillations. A type of neuronal coupling, called gap junctions,

has been shown to promote synchronization between inhibitory neurons. Computational

models show that when gap junctions are strong, neurons synchronize together. More-

over recent investigations show that the gap junction coupling strength is not static but

plastic and dependent on the firing properties of the neurons. Thus, we developed a

model of gap junction plasticity in a network of inhibitory and excitatory neurons. We

show that gap junction plasticity can maintain the right amount of oscillations to prevent

pathologies from emerging. Finally, we show that gap junction plasticity serves an addi-

tional functional role and allows for efficient and robust information transfer.
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Introduction

Oscillatory patterns of neuronal activity are reported in many brains regions with frequencies

ranging from less than one Hertz to hundreds of Hertz. These oscillations are often associated

with cognitive phenomena such as sleep or attention. Local field potential measurements in

the neocortex and thalamus show the prevalence of delta oscillations (0.5-4Hz) and spindle

oscillations (7-15Hz) during sleep [1]. Theta oscillations (4-10Hz) are also reported in hippo-

campus and other brain regions [2]. Gamma oscillations (30-100Hz) observed in the cortex

are thought to be involved in attention [3–6], perception [7, 8] and coordinated motor output

[9, 10]. Thus, at the minimum, oscillations are present during the normal functioning of neural

circuits.

However, oscillations are also associated with pathological circuit dynamics, such as hyper-

synchronous activity during epileptic seizures [11]. Altered gamma-frequency synchroniza-

tions may also be involved in cognitive abnormalities such as autism [12] or schizophrenia

[13]. Thus, given both the functional and pathological effects of oscillations, a homeostatic

mechanism is necessary to regulate oscillatory behavior.

Several mechanisms can lead to the emergence of oscillations. They can arise in homoge-

neous population of excitatory neurons, where the positive feedback loop of excitation is only

limited by the refractoriness of the neurons [14]. Alternatively, oscillations can also arise in a

coupled network of excitatory and inhibitory neurons, where the excitatory and inhibitory

neurons burst in opposing phase. [15–19]. Finally, gap junctions between inhibitory neurons

promote synchronous oscillatory patterns [20–24].

The inhibitory network oscillations primarily involve fast-spiking interneurons. These neu-

rons represent a large proportion of GABAergic interneurons [25]. They are the main cells tar-

geted by thalamocortical synapses transmitting sensory information to the cortex [26]. They

are coupled via chemical synapses and gap junctions. Gap junctions are mostly found between

neurons of the same class [26–28] but they can also connect different subtypes, such as fast-

spiking and regular spiking cells [26, 29, 30]. Moreover, there is evidence of the critical role of

fast-spiking parvalbulmin (FS) interneurons in the emergence of cortical gamma activity in

the cortex of rodents in response to sensory stimuli [31–34].

Two main properties of FS interneurons have been found critical in the existence of gamma

oscillations. Firstly, FS interneurons selectively amplify gamma frequencies through sub-

threshold resonance [33]. Secondly, gap junctions between inhibitory interneurons [27] have

been shown to enhance synchrony [24, 26, 35–41].

A computational model with both properties, inhibitory neurons with subthreshold reso-

nance, connected by gap junctions, has been shown to support gamma oscillations [24, 42–

46].

Recently, gap junction plasticity has been experimentally demonstrated [47–51]. For exam-

ple, the gap junctions between rod cells in the retina can vary their conductance during day

and night cycles [52]. Moreover, they can experience bidirectional long-term plasticity in an

activity-dependent manner [49, 53, 54]. High frequency stimulation of a coupled pair of tha-

lamic reticular nucleus (TRN) neurons induces gap junction long-term depression (gLTD)

[55]. This occurs only when the TRN neurons burst. There is no data yet on the long-term

potentiation of cortical gap junctions. However, [56] show that the pathways leading to gLTD

are calcium-dependent which suggest that gap junction long-term potentiation (gLTP) could

also be the result of an activity-dependent mechanism. Other passive mechanisms, such as gap

junction connexin turnover could compensate for long-term depression as well [57–62].

Given the existence of gap junction plasticity and the omnipresence of oscillations in cortex,

we wondered whether gap junction plasticity can regulate network-wide gamma oscillations in
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cortex. To that end, we developed a computational model of a network of excitatory and FS

inhibitory neurons. As demonstrated analytically by [24], we observed two different network

behaviors depending on the gap junction strength. For weak gap junction strength, the net-

work exhibits an asynchronous regime, whereas for strong gap junctions, the network syn-

chronizes into coherent gamma oscillations with bursting activity. We then modelled the gap

junction plasticity observed by [55] showing that bursting activity leads to gLTD. The plastic

network sets itself at the transition between the asynchronous regime, where sparse spiking

dominates, and the synchronous regime, where network oscillations dominate and burst firing

prevails. Thus, our model shows that gap junction plasticity maintains the balance between the

asynchronous and synchronous network states. This is robust to different possible gLTP rules.

We then show that the network allows for transient oscillations driven by external drive.

This demonstrates that transient, plasticity regulated oscillations can efficiently transfer infor-

mation to downstream networks. Finally we show that gap junction plasticity mediates cross-

network synchronization and allows for robust information transfer trough frequency modu-

lation. Critically, gap junction plasticity allows for the recovery of oscillation mediated infor-

mation transfer in the event of partial gap junction loss.

Results

Network synchrony depends on gap junctions strength

To study the effect of gap junction plasticity, we developed a network of coupled inhibitory

and excitatory neurons in the fluctuation-driven state (Fig 1A). The Izhikevich model was

used for the inhibitory neuron population to fit the fast-spiking inhibitory neuron firing pat-

tern [63]. Excitatory neurons are modelled by leaky integrate-and-fire models. As in [24], the

excitatory neurons act as low pass-filters for their inputs while the FS neurons have a sub-

threshold resonance in the gamma range [42–46]. To demonstrate this, we injected an oscil-

latory current of small amplitude in a single cell and recorded the amplitude response for dif-

ferent oscillatory frequencies. Excitatory neurons better respond to low frequency inputs,

while FS neurons respond maximally for gamma inputs (Fig 1B). This is in line with the exper-

imental evidence of Cardin et al. showing that FS-specific light stimulation amplifies gamma-

frequencies [33].

All neurons have chemical synapses but only inhibitory neurons are also coupled via gap

junctions (Fig 1A). The gap junctions are modelled such that a voltage hyperpolarization

(depolarization) in one neuron induces a voltage hyperpolarization (depolarization) in the

connected neuron. The current contribution of gap junction coupling is proportional to the

difference of voltages between the coupled neurons, multiplied by the gap junction strength γ
(Fig 1C). Moreover, when one neuron spikes, it emits a spikelet in the coupled neuron. We

model this by a positive inhibitory to inhibitory electrical coupling, which we add on top of the

negative inhibitory to inhibitory chemical coupling (see Materials and methods).

In order to understand the effects of gap junction plasticity, we initially considered the net-

work without plasticity. We first explored the network behavior for different values of the

mean gap junction strengths γ and mean external drive to the inhibitory neurons νI. As dem-

onstrated by [24], our network exhibits two regimes (Fig 1D): an asynchronous irregular (AI)

regime and a synchronous regular regime (SR). The AI regime occurs for networks with weak

external drive and weak gap junctions. In this regime the network is in the fluctuation driven

regime so that the neurons spike due to variations in their input. The SR regime occurs for

strong external drive and strong gap junctions. This regime leads to the emergence of gamma

oscillations. Mathematically, the network undergoes a Hopf bifurcation [24, 39]. The oscilla-

tions arise as the network directly inherits the resonance properties of the individual neurons.
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Fig 1. Network synchrony depends on gap junction strength. (A) The network consists of excitatory (E) and inhibitory (I) neurons. The neurons are

coupled in an all-to-all fashion with chemical synapses. The inhibitory neurons are also connected by gap junctions (jagged green line). (B) Voltage

response of one single excitatory (red line) / inhibitory (blue line) neuron to a sub-threshold oscillatory input current (see Methods). Excitatory neurons

act as low-pass filters, whereas the inhibitory neurons show a resonance frequency in the gamma range. This resonance is in agreement with the

network wide response observed by Cardin et al. 2009, when FS neurons are stimulated in the gamma range (black line, figure redrawn from [32] figure

3d). (C) Simulation of a pair of electrically coupled neurons N1 and N2, where N1 is voltage-clamped (red) such that it is hyperpolarized (light blue)

and the potential of N2 is measured for different value of gap junction strength (γ = 3 and γ = 5). (D) Power of the main frequency component in the

Fourier domain of the population activity (PA) of inhibitory neurons. The blue area denotes the lack of oscillations AI whereas the red area SR shows

periodic oscillations in the spiking activity of inhibitory neurons. (E) Oscillation frequency of the network activity. The white area represents a region

where the network is not oscillating and has no oscillation frequency. (F) Histogram of the oscillation frequency of population spiking activity. The

values are contained in the γ range, from 30 to 60 Hz. (G) Ratio of bursting Abursting over spiking Aspiking activity, averaged over 2 seconds. Bursting

activity prevails in the light region and sparse firing dominates in the dark region. For the following Figures 1H and 1I, 100 ms of data is represented.

(H) Raster plots of 100 FS neurons (blue) and 100 pyramidal neurons (red) for two values of the gap junction coupling, where dots represents spiking

times and each line represents a neuron (note that the network E/I proportion is actually 80%/20%). Top raster plot shows asynchronous activity for

low gap junction coupling and bottom raster plot shows synchronous activity in inhibitory and excitatory neuron populations, for strong gap junction

coupling. (I) Membrane voltage traces of individual inhibitory neurons (dark blue) and population average (light blue, down-shifted) for different

values of the gap junction coupling. Bursts appear for strong gap junction coupling on the peaks of the membrane voltage oscillations.

https://doi.org/10.1371/journal.pcbi.1006025.g001
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This is mediated through the gap junction coupling which effectively allows positive coupling

through their spikelets. Moreover, the gap junctions reduce sub-threshold voltage differences

between neurons which promotes synchrony. The excitatory neurons are not necessary for the

oscillations but they amplify the dynamics (see [24] for mathematical derivations). When

placed in the SR regime, the network oscillates in the gamma-range at a frequency near the sin-

gle neuron resonance frequency (Fig 1E and 1F). In addition, we observe that the spiking activ-

ity is characteristic to the network regime, with bursting activity in the synchronous regime

and spikes in the asynchronous regime (Fig 1G–1I).

To summarize, increased gap junction coupling and input drive into the network promotes

gamma oscillations. To explain the relationship between network activity and gap junction

plasticity, we first model the simplest case of plasticity between a pair of electrically coupled

neurons. We then apply the plasticity rule to a population of neurons and investigate the

effects on the network dynamics.

Model of gap junction plasticity: Bursting induces gLTD, spiking gLTP

To determine how gap junction plasticity can alter network dynamics, we developed a model

of the plasticity based on experimental observations. [55] have shown that bursts in one or

both neurons in an electrically coupled pair lead to long-term depression (gLTD). Therefore,

we modeled gLTD as a decrease in the gap junction strength that is proportional to the amount

of bursting. The constant of proportionality, αgLTD serves as the learning rate. To infer αgLTD,

we reproduced the bursting protocol in Haas et al., where a neuron bursting for a few millisec-

onds, 600 times for 5 minutes, leads to 13% decrease (Fig 2A).

Activity-dependent gap junction long-term potentiation (gLTP) has not been reported

experimentally yet in the mammalian brain. There is evidence for activity dependent short-

term potentiation in vertebrates [53, 64]. However, without potentiation, all gap junctions

would likely become zero with time. To address this concern, we hypothesize that gap junc-

tions can undergo gLTP and we modeled it such that single spikes induce gLTP by a constant

amount given by the potentiation learning rate αgLTP (Fig 2B, first half). Furthermore, we con-

sidered activity-independent gLTP rules in the supplementary materials (S1 Fig).

Gap junction plasticity regulates network-wide oscillations

Our plasticity model therefore potentiates gap junctions under spiking activity and depresses

under bursting activity. Therefore, we wondered how gap junction plasticity can alter network

dynamics. We previously quantified the amount of spiking versus bursting in our network for

different levels of fixed gap junction strength and mean drive. For low levels of both, the net-

work is spiking whereas for high levels of both the network is bursting. The spiking to bursting

transition (Fig 1G) corresponds to the bifurcation (Fig 1D) from asynchronous irregular to

synchronous oscillations at gamma frequency. When inhibitory neurons are oscillating, they

fire a burst of spikes at the peak of the oscillations (Fig 1I, γ = 5). Therefore, when gap junc-

tions are plastic, the network steady state can be found on the side of the bifurcation that bal-

ances the amount of potentiation due to spiking activity with the amount of depression due to

bursting activity. The depression learning rate is inferred from Haas et al., while the potentia-

tion learning rate is left as a free parameter.

We found that a strong relationship exists between gap junction plasticity and network syn-

chrony. When the network is in the AI regime, characterized by low prevalence of bursting

activity, gap junction potentiation dominates. However, for a strong mean coupling strength,

the emergence of oscillations is associated by high bursting activity which leads to depression

of the gap junctions. Therefore gap junction plasticity in our network maintains a tight balance

Gap junction plasticity as a mechanism to regulate network-wide oscillations
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between asynchronous and synchronous activity. Depending on the value of αgLTP, the posi-

tion of the plasticity fixed point lies either in the asynchronous regime (low αgLTP, Fig 2C) or

in the synchronous regime (high αgLTP). For high values of αgLTP, potentiation is fast while for

low values, the potentiation is slow.

Gap junction plasticity allows for sparse but salient information transfer

We wondered how gap junction plasticity would interact with time-varying inputs. For the

following experiment we consider slow gLTP. First, we let the network reach its steady state

with a low level of drive (Fig 2E, beginning). As previously observed, the mean gap junction

strength reaches a value which sets the network near the AI/SR transition. Then, we proceeded

by injecting an additional constant current to the network. This new current baseline induces

Fig 2. Model of gap junction plasticity: Bursting induces gLTD, spiking gLTP. (A) Bursting protocol replicated from Haas et al. [16]. A current (red

line, top panel) of 300 pA for 50 ms at 2 Hz and of -80 pA otherwise is injected into a pair of coupled neurons induces repeated bursting (blue line,

middle panel, voltage trace). To quantify the amount of bursting, we low-pass filtered (bi) the voltage trace, threshold it at θburst = 1.3 (discontinued dark

line), and integrate. Light blue areas represent the periods during which bursts are detected and therefore gap junctions are depressed. (B) When

neurons N1 and N2 spike sparsely (top panel, dark blue, first part of the stimulus), gap junctions are potentiated (bottom panel, green line, first part of

the simulation), whereas when they are bursting, gap junctions are depressed (second part of the simulation). (C) Green dots show steady-state values of

the mean gap junction coupling for the gLTP with soft bounds, for different values of the network drive along the y-axis. For slow gLTP, the steady-state

can be found in the AI regime, where the power of the oscillations of the population spiking activity is low (blue area). (D) Network architecture: A step

excitatory drive is fed to the network of E and I neurons (same network detailed on Fig 1, with plastic gap junctions) inducing gamma oscillations. The

activity of the network is read out by a downstream population of 200 regular spiking cells. (E) Top panel, step excitatory drive fed to the networks.

Second panel, evolution of the mean gap junction coupling. As the excitatory drive is delivered, a gamma oscillation appears, leading to an increase in

bursting activity which is followed by a depression of the gap junctions, until the new fixed point is reached. Bottom panels, raster plots of the inhibitory

neurons (blue, I1), excitatory neurons (red, E1) and read-out neurons (red, RON). 6 s of data is represented. (F) Top panel, step excitatory drive. Other

panels, population activity of the read-out neurons in red, evolution of the mean gap junction coupling in light blue. Second panel, simulation with

plastic gap junctions. The read-out neurons are the most active during the transient oscillations. Third panel, static gap junction coupling. The read-out

neurons are active as long as the excitatory drive is high. Bottom panel, no gap junction coupling. The read-out neurons are not active. 10 s of data is

represented.

https://doi.org/10.1371/journal.pcbi.1006025.g002
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network level oscillations (Fig 2E, transition). However, over time the mean gap junction

strength decays due to the gap junction plasticity mechanism. This gap junction depression is

followed by a loss of synchrony and the network reaches its new steady state (Fig 2E, end),

again near the border of asynchronous and synchronous regimes.

We measured the response of read-out neurons which receive projections from the excit-

atory and inhibitory neurons in our network (Fig 2D). At the onset of the current step, the net-

work undergoes transient oscillations. When the gap junctions are plastic, the downstream

neurons increase their spiking activity only for a few hundred milliseconds during the tran-

sient oscillations and then became almost quiescent again (Fig 2F, second panel). This con-

trasts with the simulation of a static network where the downstream keep a high firing rate

(Fig 2F, third panel).

These results suggest that synchronous activity is a powerful signal to provoke spiking in

downstream neurons. But oscillations and high firing rates of downstream neurons are also

metabolically costly [65]. With transient oscillations however, the downstream neurons only

sparsely fire when the stimulus changes but not when it is predictable. Thus, the regulation of

oscillations mediated by gap junction plasticity allows for sparse but salient information

transfer.

Gap junction plasticity enhances the ability of sub-populations of neurons

to synchronize

We now sought to study the functional implications of fast gLTP. As stated before, this syn-

chronizes the network into gamma oscillations. Synchronization between networks is con-

sidered to be one possible mechanism of information transfer [66–69]. We wondered

whether gap junction coupling could mediate cross-network synchronization, and how gap

junction plasticity would regulate this synchronization. To test this hypothesis, we consid-

ered two subnetworks having different oscillation frequencies and coupled by gap junctions

(Fig 3A). A fast network oscillates at a gamma frequency and therefore is called the gamma-

network. Then, a slow-network oscillates at a slower frequency as the membrane time con-

stant of its inhibitory neurons is chosen to have a larger value. Indeed, previous analyses

show that the network frequency in our model is inherited from the single neuron

resonance frequency of inhibitory neurons [24, 70]. As a result, increasing the membrane

time constant of the inhibitory neurons results in a decrease of the network oscillation

frequency (Fig 3B–3D). Cross-network gap junctions reduce the frequency and phase differ-

ence between the gamma- and slow-network (Fig 3E and 3F) and larger differences of sub-

network resonant frequencies require a larger number of cross-network gap junctions

for the networks to oscillate in harmony (Fig 3E and 3G). Their common frequency lies

between the resonant frequencies of the decoupled networks. Importantly, cross-network

synchronization requires the subnetworks to be in phase. If the gamma- and slow-network

do not share enough gap junctions, there is little mutual information and no correlation in

their population activities (Fig 3H and 3I), despite having a common oscillation frequency

in some cases ([Δfres = 0; number of shared GJs = 0] on Fig 3I). However, for small differ-

ences in the subnetworks resonant frequency Δfres, increasing the number of shared gap

junctions induces the oscillations to lock together. The networks oscillate in phase (Fig 3F,

end of first row) as reflected in their mutual information (Fig 3H, dark blue area) and their

correlation (Fig 3I, dark red area). In summary, two networks in the SR regime with differ-

ent resonance frequencies and/or out-of-phase can synchronize if they are coupled by gap

junctions. Furthermore, a large number of shared gap junctions is required for large differ-

ences of resonant frequency.

Gap junction plasticity as a mechanism to regulate network-wide oscillations
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Fig 3. Subnetworks having different frequency preferences can synchronize their activity if they share gap junctions. (A) Both subnetworks have

the same topology with all-to-all connected inhibitory and excitatory neurons. Inhibitory neurons have static gap junctions (GJs). The Gamma Network

(GN) is connected to the Slow Network (SN) with a varying number of gap junctions. The time constant of the SN inhibitory neuron membranes is

varied. (B) Frequency-transfer characteristics of one single inhibitory neuron to a sub-threshold oscillatory input current (see Methods) for different

values of its membrane time constant τv. The sub-threshold resonance frequency decreases as τv increases. Data of Cardin et al. 2009 is also represented

(black line, figure redrawn from [32] figure 3d). (C) Changing the single neuron sub-threshold resonance modifies the network oscillation frequency.

Mean inhibitory membrane potential for τv = 17 ms (continuous line) and τv = 55 ms (dashed line). 100 ms of data is represented. (D) Relationship

between single neuron resonance (black line) and network oscillation frequency (gray line). For the following figures E and F, for the tuples (Δfres;
Number of shared GJs), the upper (lower) triangle represents the value in the SN (GN). For panels E, F, H, I, the x-axis represents the number of cross-

network gap junctions between the GN and SN. The y-axis represents the difference of resonance frequency between the GN and the SN. (E) Oscillation

frequencies. We observe that the GN and the SN adopt the same oscillation frequency for low Δfres and high number of shared gap junctions. (F) Phase

differences between population activities of the GN and the SN, when they share the same frequency. Lighter squares denote parameters for which the

phase difference is lower. The GN and the SN are considered in phase when the phase difference is zero. Dark blue squares describe a region that is

excluded because the GN and the SN do not oscillate at the same frequency, therefore cannot be in phase. (G) Raster plots, where dots represent spiking

times and each line represent a neuron, for small (first column) and large (second column) differences in Δfres. For all raster plots, from top to bottom

are represented excitatory and inhibitory neurons from the SN, then inhibitory and excitatory neurons from the GN. 100 neurons are shown for each

population. When no gap junctions are shared (bottom row), both networks do not synchronize and are out-of-phase. With 40 shared gap junctions

(top row), the networks synchronize and are in phase for small values of Δfres. 100 ms of data is represented. (H) Mutual information between the PAs

of the GN and SN. The increase in mutual information for the top row, where Δf = 21Hz, can be due to the fact the SN oscillates at half the frequency of

the GN (which oscillates around 40Hz). (I) Pearson’s correlation of the PAs of the GN and SN. Comparing with panel H, there is high correlation when

the GN and the SN are in phase.

https://doi.org/10.1371/journal.pcbi.1006025.g003
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As gap junctions can synchronize two oscillating populations of neurons, we wondered

whether the same synchronization would occur with one population in the AI regime. First,

we initialized the gamma-network in the AI regime while the slow-network was initialized in

the SR regime (Fig 4A). After coupling the gamma- and slow-network together, we found that,

while the oscillation frequency of the gamma- and slow-network matched (Fig 4B), the two

networks could not synchronize. The networks were always out-of-phase with very weak cor-

relation between the population activities (Fig 4C and 4D). The results were similar if the

gamma- and the slow-network were initialized in the reverse synchronous and asynchronous

parameter regimes, respectively (not shown). Cross-network synchronization is not robust

when one network is not oscillatory.

Given these constraints on cross-network synchronization, we wondered if gap junction

plasticity could remedy the situation and allow for robust cross-network synchronization. To

test this hypothesis, we repeated the simulation protocols with the gamma- and slow-network

initialized in the asynchronous and synchronous regimes (respectively) and with plastic gap

junctions. Here we considered the case where the gLTP rates were slow. As shown previously,

gap junction plasticity regulates oscillations such that the network in the asynchronous irregu-

lar regime transitions to the oscillatory regime (Fig 4E). The oscillation frequencies of these

two networks match (Fig 4F). Strikingly, even with a large resonant frequency difference, the

gamma- and slow-network now synchronize through a small number of shared gap junctions

Fig 4. Gap junction plasticity lets networks recover synchronization. For all panels, the x-axis represents the number of cross-network gap junctions

between GN and SN. The y-axis represents the difference of resonance frequency between the GN and the SN. The gap junctions are static from panels

A to D and plastic from panels E to H. Values for the Gamma Network (resp. Slow Network) are represented by the lower (upper) triangles. The GN

(SN) has weak (strong) initial mean GJ coupling. Shared GJs are initialized with mean coupling strength in the middle between those of the GN and the

SN. (A) Oscillation power. The GN, with weak GJ coupling, shows weak or no oscillations. (B) Oscillation frequency. We observe that the GN and the

SN oscillate at the same frequency only for high number of shared GJs. (C) Phase differences between PAs of the GN and the SN (as for Fig 3H). The

GN and the SN stay mostly out-of-phase. (D) Correlation of the PAs of the GN and the SN. Except for the particular case where Δfres = 0 and the

number of shared GJs is high, the PAs of the GN and the SN show no correlation. (E) Oscillation power. Comparing with panel A, we observe that the

oscillation power seems to match in both networks, with mostly the oscillation power of the GN (initially weak) increasing to the SN’s levels (initially

strong). (F) Oscillation frequency. Comparing with panel B, we observe an extension of the region where the GN and the SN oscillate at the same

frequency. (G) Phase differences between PAs of the GN and the SN. We observe here a large region where the GN and SN are in-phase. (H)

Correlation of the PAs of the GN and the SN. Comparing with panel D, we observe a large extension of the region where both networks are

synchronized.

https://doi.org/10.1371/journal.pcbi.1006025.g004
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(Fig 4G and 4H). This indicates that gap junction plasticity allows for cross-network synchro-

nization that is robust to the underlying neuronal parameters for small numbers of shared gap

junctions.

Gap junction plasticity allows for robust information transfer

We hypothesized that cross-network synchronization mediated by plasticity allows informa-

tion transfer. To investigate this, we considered a similar network architecture as previously

studied, with two networks, an input-network and an output-network. The input-network

receives an input projected by random weights to its neurons. The output-network is con-

nected to the input-network with a small number of gap junctions and inhibitory chemical

synapses.

First, to demonstrate the information transfer capability of the network, we consider static

gap junctions with oscillatory inputs to the input-network. The stimulus information is trans-

mitted to the output-network via the frequency modulation of the synchronized oscillations

and not by spike transmission nor amplitude modulation (Fig 5A–5D). When sharing gap

junctions, the input- and output-network synchronize together (Fig 5A) and their spiking

activity is locked (Fig 5B). As the amplitude of the input signal increases, the spiking activity

increases in the input-network but not in the output-network (Fig 5C). For a network in the

SR, there is a positive correlation between the signal amplitude and the network oscillation fre-

quency (Figs 1E and 5D). This frequency modulation is transferred from the input- to the out-

put-network. Thus, the input amplitude can be estimated from the oscillation frequency of the

output-network, despite the absence of chemical synapses between the input-network and the

output-network (Fig 5E). However, this synchrony code is only possible for signals below a

certain frequency (Fig 5F and 5G). Indeed, the instantaneous oscillation frequency is estimated

by measuring the period between consecutive peaks of the population activity. For example,

oscillations at 50 Hz have a period of 20 ms. Variations happening within those 20 ms are com-

pressed to a single period value and thus are not transferred via frequency modulation. Mecha-

nisms for estimating the input value from the oscillation frequency of the output-network are

discussed further in the methods section. Finally, we tested if this synchrony code was valid for

non-oscillatory signals (Fig 5H). We found that non-oscillatory, slowly varying random signals

could also be robustly transmitted from the input- to the output-network with gap junction

coupling (Fig 5I).

As gap junction plasticity can regulate oscillations, we tested whether the plasticity can

make this synchrony code robust to parameter variations or potential gap junction loss. First,

as previously shown, gap junction plasticity enhances the ability of networks to synchronize. If

initialized in the AI regime and with static gap junctions, there is no information transfer via

frequency modulation (Fig 5J, left panel). However, with plasticity and fast gLTP, the oscilla-

tions are regulated and the network synchrony is recovered which results in successful infor-

mation transfer (Fig 5J left panel). A critical amount of oscillation power and a critical number

of shared gap junctions are required for information transfer, after which increasing each of

them does not yield significant improvement (Fig 5J). Furthermore, we studied whether gap

junction plasticity could restore information transfer if gap junctions were deleted. While

there is loss in the quality of the transfer when static gap junctions are removed, plastic gap

junctions maintain the quality of the transfer by increasing the strength of the remaining gap

junctions. This mechanism compensates for the missing gap junctions (Fig 5J and 5K).

To summarize, gap junction plasticity expands the necessary conditions for information

transfer. It regulates oscillations, and by promoting phase-locking of oscillations, it contributes

to the propagation of information to downstream networks. Finally, if some gap junctions are
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failing, due to protein turnover perhaps, the remaining ones can increase their strength

through plasticity. This helps to maintain accurate information transfer.

Discussion

Our modelling study tested whether gap junction plasticity can regulate gamma oscillations in

cortical network models. Our findings suggest that gap junction plasticity can maintain a bal-

ance between synchronous regular and asynchronous irregular regimes. For strong electrical

coupling, the network is in the oscillatory regime. The oscillations consist of synchronized

Fig 5. Gap junction coupling allows networks to transmit information and gap junction plasticity improves robustness of the transfer. (A

Voltages traces of inhibitory neurons in the input-network (IN) in light blue and in the output-network (ON) in purple, when networks share no GJs

(first rows) or 40 GJs (bottom rows). Despite not directly receiving the input signal, the ON synchronizes its activity with the IN. For panels B to I, the

networks share 40 GJs. 50 ms of data is represented. For the following figures 5B, 5C and 5H, 1 s of data is represented. (B) Input signal in red, number

of spiking events of inhibitory neurons of the IN in light blue and of the ON in purple, for time bins of 0.1 ms. (C) Input signal in red, number of

spiking events of inhibitory neurons of the IN in light blue and the ON in purple, for time bins of 25 ms. (D) Input signal amplitude Ai as function of

the corresponding PA peak interval Ti for input signals oscillation at 4 Hz with mean varying from 0 to 1000 (See Methods). (E) Input signal in red and

decoded input signal in purple. The PA peak interval Ti is used to estimate the input amplitude. (F) Correlation between input signal and decoded input

signal. The amplitude of the input is 400 pA, its frequency goes from 0 to 100 Hz. (G) Correlation between input signal and decoded input signal. The

amplitude of the input goes from 0 to 10000 pA, its frequency goes from 0 to 100 Hz. (H) Example of 1 s of colored noise input signal (A = 800 pA,

mean = 400 pA, τfilter = 100 ms) in red and decoded input in purple (correlation 0.8). (I) Pearson’s correlation coefficient between input and decoded

input for static (plastic) network in black (gray) for different values of the mean initial GJ coupling strength, as function of the number of shared GJs.

The simulation is repeated for 10 different inputs. (J) Pearson’s correlation coefficient between input and decoded input for static (resp. plastic)

network in black (resp. gray) as function of the proportion of GJs removed. The simulation is repeated for 10 different inputs. (K) Mean gap junction

change between the steady-state value obtained with all the gap junctions, and the steady-state value obtained after gap junction removal. The

remaining gap junctions compensate for the missing ones as they become stronger in strength.

https://doi.org/10.1371/journal.pcbi.1006025.g005
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bursting mediated by the inhibitory neuron network. These bursts trigger depression of the

gap junctions [55] allowing the network to leave the oscillatory regime and spike asynchro-

nously. However, the irregular asynchronous regime is dominated by sparse firing. Either this

sparse firing, or constant protein connexin turnover may be a source of gap junction potentia-

tion [48, 56–61]. Thus, the asynchronous irregular regime tends to potentiate gap junctions.

Therefore, the network behavior critically depends on the plasticity learning rate. Fast gLTP

leads to synchronous activity while slow gLTP leads to asynchronous states. We demonstrate

the functional role of plasticity in both cases. In the AI regime, the network can respond to

changes in input drives through transient oscillations. Those transient oscillations could serve

as an energetically efficient way to transfer information to a downstream neuron. In the SR

regime, the network oscillations can serve as the substrate for information routing between

networks. These results demonstrate how gap junction plasticity can regulate oscillations to

mediate information transfer between cortical populations of neurons.

Gap junction coupling between interneurons affects network synchrony

Despite being less common than chemical synapses, gap junctions are ubiquitous in the central

nervous system. Example includes the inferior olivary nucleus [71–73], the thalamic reticular

nucleus [74, 75], the hippocampus [36, 76], the retina [52, 77], the olfactory bulb [78], the

locus coeruleus [79], or also the neocortex [80, 81]. Moreover, they drastically alter the firing

activity of their connecting neurons [82, 83], as well as the network dynamics [20–24]. Fur-

thermore, gap junctions between inhibitory interneurons are reported in many cortical

regions where global oscillations of neural activity are observed [21, 27, 84, 85]. These inhibi-

tory neurons exhibit sub-threshold resonance that amplifies a specific frequency range [33].

Therefore, gap junction induced synchrony and inhibitory neurons frequency preference are a

possible substrate for global oscillations in these cortical regions. Our work is consistent with

recent results showing that together gap junction strength and sub-threshold resonance of

inhibitory neuron promote oscillations of neuronal activity [24, 70].

Previous models of gap junction plasticity

There has been a recent interest in modelling gap junction plasticity. Snipas et al. [86] devel-

oped of model of gap junction coupling that would exhibit short-term plasticity. By combining

a 36-state model of gap junction channel gating with Hodgkin-Huxley equations [87], they

show that gap junction channel gating, induced by bursting activity, could lead to short term

depression. In future work, it would be interesting to combine this model of gap junction

short-term plasticity with our model. Chakravartula et al. [88] introduced a new type of adap-

tive diffusive coupling in a network of Hindmarsh-Rose neurons [89, 90]. They assumed that

connections between pairs of neurons would follow a Hebb’s law [91], where neurons with

simultaneous activity would strengthen their connection, while others with dissimilar activity

would weaken their coupling. They observe the emergence of locally synchronized groups of

neurons, whose synchronization could be transient or permanent. Their results are consistent

with ours showing synchronization of subnetworks coupled with gap junctions.

Model of gap junction plasticity: Bursts induce gLTD, spikes induce gLTP

Recently, Haas et al. [55] reported the first experimental evidence of activity-dependent

gLTD of gap junctions of interneurons in the thalamic reticular nucleus, even though the

mechanism remains to be investigated [62]. Also Sevetson et al. [56] found that calcium-reg-

ulated mechanisms support gap junction gLTD in the thalamic reticular nucleus. The mecha-

nisms are similar to those observed for the plasticity of chemical synapses. We designed a
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rule for activity-dependent gLTD consistent with those results. We assumed that a cortical

fast-spiking interneuron would exhibit the same plasticity properties as a thalamic reticular

neuron because gap junctions are mostly made from the connexin Cx36 throughout the cen-

tral nervous system [74, 92]. To our knowledge, there is no study yet on activity-dependent

gLTP of gap junctions. However recent studies suggest that gLTD and gLTP share a common

pathway [48, 56]. Therefore, we propose a rule for activity dependent gLTP, assuming that

low frequency spiking activity leads to gap junction potentiation. However, our results do

not depend on the exact formulation of gLTP. As we have shown, an activity-independent

rule yields similar behavior (supplementary material, S1 Fig). Moreover, we did not observe

significant changes by modelling asymmetrical gap junctions (supplementary material, S2

and S3 Figs).

Gap junction plasticity regulates oscillations and propagates transient

information

Our model demonstrates that the regulation of oscillations is mediated by gap junction plas-

ticity. Fast potentiation leads to bursting activity while slow potentiation leads to asynchro-

nous irregular activity. Our first hypothesis assumed that the potentiation is slow and the

network is in the AI regime. Thus, at the steady-state, gamma power is weak or non-existent.

Evidence from Tallon-Baudry et al. and Ray et al. [93, 94] is consistent with our results.

When no stimulus is provided or task required, electroencephalogram recordings show that

power in the gamma-band is weak. After the onset of a sensory stimulus, gamma oscillations

can be detected in cortical areas. This has been reported for example with visual stimuli trig-

gering gamma oscillations in the mouse visual cortex [95]. In our model, the neurons oscil-

late transiently when receiving a constant external stimulation. This mechanism operates by

crossing the bifurcation boundary between the AI and SR regime. However, over time the

mean gap junction strength decays due to the additional bursting activity. The gap junction

depression leads to a loss of synchrony and the network returns to the AI regime. Therefore

we predict a loss in gamma power for sustained stimulus. A similar mechanism may be

involved in the reduction of gamma oscillation induced by slow smooth movements [96,

97].

We wondered what could be the functional role of this transient oscillatory regime. Project-

ing the excitatory activity of our network model to downstream neurons revealed that they fire

sparsely, for a short duration after stimulus onset, and are quiescent otherwise. Thus, gap junc-

tion plasticity could efficiently encode the change in incoming stimuli. This could allow for

energy conservation as oscillations are energetically expensive [65]. Moreover, [98] show that

cortical circuits near the onset of oscillations could promote flexible information routing by

transient synchrony.

Plastic gap junction coupling for robust information routing

The role of gamma oscillations is highly debated [94]. They could play no role and simply be

a marker of the excitation-inhibition interaction. However others studies suggest they could

be involved in information transfer. It is thought that retinal oscillations carry information

to the visual cortex [99]. Moreover they could serve as inter-area communication by pro-

moting coherence in neural assemblies which would align their windows of excitation. This

would allow for effective spike transmission [68, 94, 100]. Furthermore, Roberts et al. [101]

observed high gamma coherence between layers 1 and 2 of macaque’s visual cortex by

dynamic frequency matching. Here, we demonstrate one potential mechanism for

Gap junction plasticity as a mechanism to regulate network-wide oscillations
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information transmission through gamma oscillations. Our networks make use of gamma

frequency modulation to transmit information in a robust manner, similar to the principle

used for FM radio broadcasting. The amplitude of the input signal modulates the oscillation

frequency, which increases almost linearly with the amplitude. Our model demonstrates that

gap junction plasticity robustly mediates network oscillations and cross-network synchroni-

zation. If some gap junctions are removed, the remaining gap junctions become stronger

and compensate for the missing ones. Thus, gap junction plasticity insures the phase-locking

of the coupled network and it allows for information routing. In particular, there is evidence

suggesting that gap junctions could promote long-distance signaling by implementing fre-

quency modulation of calcium waves in astrocytes [102]. Moreover, correlation was found

during gamma activity between amplitude and frequency modulation of local field potential

of CA3 pyramidal neurons of anesthetized rats [103]. In addition, our network models could

also represent the subnetworks of the TRN, with each connected to a separate excitatory

neuron of thalamus [104]. However, TRN inhibitory neurons exhibit longer bursts than

those of cortical fast-spiking neurons, due to long lasting T-current (about 50ms) and fur-

ther work is necessary to make predictions on this brain region behaviour [105].

Failure to regulate oscillations, could be the origin of several cognitive pathologies. Disrup-

tion of brain synchrony in the inferior olive is thought to contribute to autism due to the loss

of coherence in brain rhythms [106]. Excess of high frequency network wide oscillations in

the cortex have been observed to also correlate with autism in young boys [12]. The inferior

olive differs for its density of gap junction being the highest in the adult brain [71, 72]. It may

be involved in the generation of tremors in Parkinson’s disease, however the severity of

induced tremors in Cx36 knockout mice remained the same as in wild-type mice [107, 108].

This could be due to gap junctions made from other connexins (such as Cx43) taking over for

the knocked-out ones.

Recent studies highlight the critical role of gap junctions and their plasticity in efficient cog-

nitive processing [109]. As experimental and computational techniques improve, new efforts

can further unveil their properties and expand our understanding of cortical functions. Our

computational model shows that gap junction activity-dependent plasticity may play an

important role in network-wide synchrony regulation.

Methods

We consider a network with NI inhibitory neurons (20%) and NE excitatory neurons (80%)

with all-to-all connectivity (Fig 1A). Inhibitory neurons are modelled by an Izhikevich model

and excitatory neurons by a leaky integrated-and-fire model (LIF) [63, 110]. The simulation

time-step is dt = 0.1 ms. Inhibitory neurons are connected by both electrical and chemical syn-

apses, whereas excitatory neurons have only chemical synapses. We designed a novel plasticity

model for activity dependent plasticity of gap junctions and we investigated its impact on net-

work dynamics and function. We then investigated the dynamics of two networks coupled by

chemical and electrical synapses. We use a decoder to quantify the effects of gap junction plas-

ticity on information transfer. The model is written in Python and takes advantage of the ten-

sorflow library that leverages GPU parallel processing capabilities [111]. It is available on

ModelDB (http://modeldb.yale.edu/230324).

Neuron model

We model Fast Spiking (FS) interneurons with Izhikevich type neuron models [63]. This

model offers the advantage to reproduce different firing patterns as well as a low computational
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cost [112]. The voltage v follows

tv _v ¼ ðv � vraÞðv � vrbÞ � kuuþ RI; ð1Þ

tu _u ¼ aðv � vrcÞ � u; ð2Þ

combined with the spiking conditions,

if v � vthreshFS; then
v vresetFS

u uþ b:

(

ð3Þ

where τv is the membrane time constant, vra is the membrane resting potential, vrb is the mem-

brane threshold potential, ku is the coupling parameter to the adaptation variable u, R is the

resistance and I is the current. The adaptation variable u represents a membrane recovery vari-

able, accounting for the activation of K+ ionic currents and inactivation of Na+ ionic currents.

It increases by a discrete amount b every time the neuron is spiking and its membrane potential

crosses the threshold vthreshFS. It provides a negative feedback to the voltage v. The recovery

time constant is τu, a is a coupling parameter, vresetFS, and vrc are voltage constants and b is a

current constant.

For the FS neurons, we chose the membrane potential reset vresetFS and the spike-triggered

adaptation variable b to account for the onset bursting activity observed in vivo. Modifying ku,

vra, vrb and vrc was sufficient to observe the emergence of a resonance frequency. We set the

time constant τu to obtain a resonance frequency of 45 Hz, which is in the same range as

observed in vivo by [33] (Fig 1B). To measure the sub-threshold resonant property (Figs 1B

and 3B and 3D), we recorded the amplitude of the neuronal membrane potential VE in

response to different oscillation frequencies f of low level sinusoidal currents I(t) = I0 cos(2πft)
(with I0 = 0.01 pA). We then normalized the amplitude response as follow

REðf Þ ¼
jjVEðI0cosð2pftÞÞjj

maxf ðjjVEðI0cosð2pftÞÞjjÞ
; ð4Þ

for frequencies between 0 and 1 kHz. The || || denotes the maximum absolute value observed

over time.

To model regular spiking excitatory neurons, we chose a leaky integrate-and-fire model,

tm _v ¼ � v þ RmI; ð5Þ

where τm is the membrane time constant, v the membrane potential, I the current and Rm the

resistance. Spikes are characterized by a firing time tf which corresponds to the time when v
reaches the threshold vthreshRS. Immediately after a spike, the potential is reset to the reset

potential vresetRS.

Network

In the single network model (Figs 1 and 2), each neuron is connected to all others by chemical

synapses, but in addition, inhibitory neurons are connected via electrical synapses to all other

inhibitory neurons, as in [24]. Thus, the current each individual neuron i receives can be

decomposed in four components

IiðtÞ ¼ Ispikei ðtÞ þ Igapi ðtÞ þ Inoisei ðtÞ þ Iexti ðtÞ; ð6Þ

where Ispikei ¼ Ichemi þ Ieleci is the current coming from the transmission of a spike via electrical

(i.e. spikelet) and chemical synapses, Igapi is the sub-threshold current from electrical synapses
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(for inhibitory neurons only), Inoisei is the noisy background current and Iexti characterizes the

external current. The current due to spiking Ispikei on excitatory neurons is given by

Ispikei ðtÞ ¼WIE
XNI

j¼1
j6¼i

X

tjk<t
exp �

t � tjk
tI

� �

þWEE
XNE

j¼1
j6¼i

X

tjk<t

exp �
t � tjk

tE

� �

: ð7Þ

The current Ispikei into inhibitory neurons are

Ispikei ðtÞ ¼
XNI

j¼1
j6¼i

X

tjk<t
WII

ij exp �
t � tjk

tI

� �

þWEI
XNE

j¼1
j6¼i

X

tjk<t

exp �
t � tjk

tE

� �

; ð8Þ

where Wαβ is the coupling strength from population α to population β with {α, β} = {E, I}.
Finally, WII

ij ¼WII;c þWII;e
ij is the inhibitory to inhibitory coupling between neuron i and j,

consisting of the chemical synaptic strength WII,c and WII;e
ij the electrical coupling for supra-

threshold current, also called the spikelet. There is no experimental data yet on the change of

the spikelet as function of the strength of the gap junctions. We hypothesize that the contribu-

tion of the spikelet is proportional to the gap junction coupling WII;e
ij ¼ kspikelet � gij, where γij is

the gap junction coupling between neurons i and j. This spikelet term is necessary due to the

fact that our neuron model does not explicitly have a spike kernel in the voltage dynamics

[24]. Note that WEE, WEI, WIE, WII,c are identical among neurons, but WII
ij varies as the spikelet

contribution depends on the coupling strengths γij, which can be plastic. We also modeled the

network with chemical weights following a log-normal distribution, which yielded similar

results (data not shown).

We represent the post-synaptic potential response to a chemical or electrical spike with an

exponential of the form exp � t� tjk
ta

� �
for t> tjk. The excitatory and inhibitory synaptic time

constants are τE and τI respectively and tjk represents the kth firing time of neuron j.
In between spikes, for every pair of inhibitory neurons i, j, the gap junction mediated sub-

threshold current Igapi is characterized by

Igapi ðtÞ ¼
XNI

j¼1
j6¼i

Igapij ðtÞ ¼
XNI

j¼1
j6¼i

gijðVjðtÞ � ViðtÞÞ; ð9Þ

where γij is the gap junction coupling between inhibitory neurons i and j of respective mem-

brane potential Vi and Vj. In our model, we suppose that gap junctions are symmetric with

γij = γji. Gap junctions are initialized following a log-normal distribution with the location

parameter μgap = 1 + ln(γ/NI) and the scale parameter σgap = 1.

Neurons also receive the current Inoise which is a colored Gaussian noise with mean ν, stan-

dard deviation σ and τnoise the time constant of the low-pass filtering

tnoise _sðtÞ ¼ � sðtÞ þ xðtÞ ð10Þ

and

InoiseðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2tnoise

p
sðtÞsþ n; ð11Þ

with ξ is drawn from a Gaussian distribution with unit standard deviation and zero mean.
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Plasticity model of gap junctions

Our plasticity model is decomposed into a depression γ− and a potentiation term γ+.

gLTD: Depression of the electrical synapses for high frequency activity

Haas et al. [55] showed that bursting activity of both neurons or one of the two neurons leads

to long-term depression (gLTD) of the electrical synapses. To capture this effect in our model,

we first defined a variable bi which is a low-pass filter of the spikes of neuron i

tb
_biðtÞ ¼ � biðtÞ þ tb

X

tik<t

dðt � tikÞ; ð12Þ

where δ is the Dirac function and τb = 8 ms is the time constant. When bi reaches a value of

θburst = 1.3, this indicates that two or more spikes happened within a short time interval. There-

fore, the burstiness of neuron i is characterized by H(bi − θburst) where H is the Heaviside func-

tion that returns 1 for positive arguments and 0 otherwise.

In our simplified model, we consider that the individual electrical coupling coefficient γ
between neurons are non-directional. Every time the interneurons burst, the gap junctions

undergo depression,

_g �ij ðtÞ ¼ _g �ji ðtÞ ¼ � agLTD½HðbiðtÞ � yburstÞ þHðbjðtÞ � yburstÞ�; ð13Þ

where αgLTD is the depression learning rate.

We fit αgLTD to the data by implementing the stimulation protocol used in [55]. We applied

a constant current injection of 300 pA for 50 ms every 0.5 s (2 Hz) and of -80 pA the rest of the

time, to maintain the membrane potential at -70 mV. This protocol lasts for 5 minutes. We

estimate αgLTD = 15.69 nS �ms−1 by such that it leads to a depression of 13% of the gap junction

strength at the end of the stimulation protocol, as reported by Haas et al.

gLTP: Potentiation of the electrical synapses for low frequency activity

If gap junctions were only depressed, they would decay to zero after some time. Therefore,

there is a need for gap junction potentiation. However, no activity dependent mechanisms was

reported yet in the experimental literature, but several studies suggest that the calcium-regu-

lated mechanisms leading to long-term depression could be involved in potentiation as well

[48, 53, 56, 113].

We consider two gLTP rules. The first has a soft bound, i.e. the magnitude of modification

is proportional to the difference between the gap junction value and a baseline coupling

strength γb

_gþij ðtÞ ¼ _gþji ðtÞ ¼ agLTP

gb � gijðtÞ
gb

� �

½spiðtÞ þ spjðtÞ�: ð14Þ

where αgLTP is the potentiation learning rate and spi(t) = ∑tik<t δ(t − tik).
The second gLTP rule we consider has no maximum bounds

_gþij ðtÞ ¼ _gþji ðtÞ ¼ agLTP½spiðtÞ þ spjðtÞ�: ð15Þ

Moreover, to show that our results do not depend on the specific gLTP rule, we also con-

sider a different gLTP rule where the update is passive and therefore does not depend on neu-

ral activity. This alternative rule yields similar results (supplementary material, S1 Fig).
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Coupling coefficient

The coupling coefficient is the ratio of voltage deflections when a step current was injected to

one neuron of a coupled pair, which were maintained at a baseline voltage of -69 mV. During

current injection, the injected neuron is hyperpolarized at -75 mV

cc12 ¼
DV2

DV1

; ð16Þ

when 1 is the index of the injected neuron. The gap junction conductance used for measuring

the coupling coefficient was obtained from the mean value of the gap junction coupling at

steady-state. The coupling coefficient is about 5% for a network of 200 inhibitory neurons.

Please note that the gap junction conductance and the coupling coefficient scale inversely to

the network size in our model. We chose to use the mean value, as there is very little variance

(4 orders of magnitude lower that the mean value) in the gap junction coupling strength at

steady state. For reference, the coupling coefficient was measure around 12%±8% averaged for

313 pairs in the TRN [55]. Moreover, for adult rats, for 91 paired recordings of adjacent IO

neurons, the coupling coefficient varies from 1% to 8% [114], and for 14 pairs of fast-spiking

cortical neurons, the coupling coefficient was around 1.5% [115].

Quantification of network spiking activity

To estimate the plasticity direction for different value of external input ν and gap junction

strength γ, we observe the activity of the network (without plasticity) in a steady state over a

duration T = 6 s. For a chosen tuple (ν;γ), we average over time and over neurons the bursting

and spiking activity

Abursting ¼
1

T

Z T

0

1

NI

XNI

i¼1

½HðbiðtÞ � yburstÞ�dt ð17Þ

and

Aspiking ¼
1

T

Z T

0

1

NI

XNI

i¼1

spiðtÞdt: ð18Þ

Then, we explore the values of the ratio of bursting over spiking activity

ratio ¼
Abursting

Aspiking
ð19Þ

as function of the coupling coefficient γ and of the mean external input ν over the parameter

space P1 ¼ ½0; gmax� � ½0; nmax�.

Quantification of oscillation power and frequency

To quantify the frequency and the power of the oscillations in the neuronal activity, we per-

form a Fourier analysis of the population activity r which we define as the sum of neuron

spikes within a population, during the time step dt

rðtÞ ¼
1

dt
1

NI

Z tþdt

t

XNI

i¼1

X

tik<t

dðu � tikÞdu: ð20Þ
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We compute a Discrete Time Fourier Transform (DFT) and extract the power and the fre-

quency of the most represented frequency in the Fourier domain. The formula defining the

DFT is

r̂ k ¼
XN� 1

n¼0

rn exp � i2pk
n
N

� �
k ¼ 0; . . . ;N � 1: ð21Þ

where the rn sequence represents N uniformly spaced time-samples of the population activities.

We measure the amplitude of the Fourier components r̂ k for k = 1..N/2 (because the Fourier

signal is symmetric from N/2 to N). We identify the maximal one, its associated frequency

fmax ¼
k
N and its power P ¼ ðjr̂ kj=NÞ

2
.

Downstream read-out neurons

To simulate the projection of a cortical layer onto another layer, we model downstream read-

out neurons with the same regular spiking neuron model as the first cortical layer. The input Ij
received by each downstream neuron is the projected activity of all excitatory and inhibitory

neurons of the first cortical layer, multiplied by the coefficients WERON and WIRON respec-

tively:

IjðtÞ ¼WERON
XNE

i¼1

X

tik<t

exp �
t � tik

tE

� �

þWIRON
XNI

i¼1

X

tik<t

exp �
t � tik

tE

� �

: ð22Þ

When delivering the step current Istep to the network (Fig 2D), the time at which the neu-

rons receive Istep follows a normal distribution centered on the transition time, with variance

10 ms. This variability avoids the confound of transient and unstable synchronization of the

network due to a strong input delivered to all neurons simultaneously.

Cross-network synchronization

We investigate the role of gap junction coupling and its plasticity in synchronizing networks

having different oscillation frequency preferences. We design a network consisting of two sub-

networks having the same topology as described in Network: Each subnetworks has 800 excit-

atory neurons and 200 inhibitory neurons. There are all-to-all chemical synapses within each

subnetworks (their strengths are reported in Table 1). There are no cross-network chemical

synapses. The intra-network gap junctions are all-to-all. In addition, we vary the number of

sparse cross-network gap junctions from 0 to 40. The gap junction strengths are initialized fol-

lowing a log-normal distribution as described in Network. We take γ = 3 which yields AI

behavior in the network and we take γ = 5.5 which yields bursting behavior in the SR regime.

One of the subnetworks is called the Slow Network (SN) and we change the value of the

membrane time constant of its inhibitory neurons τv from 17 ms to 55 ms. This decreases the

neuron sub-threshold resonance frequency, which also lowers the frequency of the subnetwork

oscillation when it is in the synchronous regime. The second subnetwork has its neuron mem-

brane time constant fixed at 17 ms and is called the gamma-network because it oscillates at

gamma frequency. The simulations last 10 seconds, which is long enough for the gap junction

coupling to reach its steady state when the gap junctions are plastic.

To quantify the similarity between population activities from both subnetworks, we evalu-

ate the Pearson’s correlation coefficient between their population activities rGN and rSN from

the gamma- and slow-network respectively. The firing rates, rGN and rSN are defined as in Eq

(20).
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We measure the mutual information between the mean currents from SN and GN with

IðX;YÞ ¼
X

x;y

pðx; yÞ log
pðx; yÞ
pðxÞpðyÞ

; ð23Þ

where p(x, y) is the joint probability function of X and Y, and p(x) and p(y) are the marginal

Table 1.

Cortical Fast Spiking Interneurons Cortical Regular Spiking Neurons

τI 10 ms τE 12 ms

τE 10 ms τm 40 ms

τv 17 ms Rm 0.6 O

τv for SN (Figs 3 and 4) [17-55] ms vresetRS -70 mV

τu 10 ms vthreshRS 0 mV

R 8 O

ku 10 O Gap junction plasticity

vra -75 mV αgLTD 15.69 nS �ms−1

vrb -60 mV αgLTP 2.9 αgLTD
vrc -64 mV θburst 1.3

vresetFS -47 mV τb 8 ms

vthreshFS 25 mV

a 1 nS Downstream read-out neuron

b 50 pA Tsim 10 s

kspikelet 40 NRON 200

ν 20 pA

Istep 250 pA

WIE -10000

WERON 1000

WIRON -1750

Network Information routing—Fig 5

dt 0.1ms Tsim 10 s

NI 200 τfilt 3 ms

NE 800 τx 100 ms

WII −80 μIN 0.5

WIE −5000 σIN 1/200

WEE 500 ν 200 pA

WEI 300 θr 2

γ (Figs 2E and 2F and 3) 5.5 A (Fig 5D) [0-2000] pA

γ (Fig 5 other than I) 5.5 A (Fig 5G) [0-10000] pA

γ (Fig 4) for GN 3 σ 400 pA

γ (Fig 4) for SN 5.5 f (Fig 5B, 5C, 5D and 5E) 4 Hz

γb (Figs 1 and 2) 10

γb (Figs 3–5) 0

σgap 1

μgap 1

ν [0 pA; 300 pA]

τnoise 10 ms

A (Fig 5, all others) 400 pA

https://doi.org/10.1371/journal.pcbi.1006025.t001
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probability distribution functions of X and Y respectively. Time bins of 10 ms are used to esti-

mate the probability functions.

For each subnetwork, we evaluate the frequency and power of their oscillations as described

in the section Quantification of oscillation power and frequency. When the difference of oscilla-

tion frequency between both subnetworks is less than 1 Hz, we measure the cross-correlation

of their population activities rGN and rSN

ðrGN ? rSNÞðtÞ ¼
def
Z 1

� 1

rGNðtÞ rSNðt þ tÞ dt: ð24Þ

The phase difference is measured as the time delay relative to the oscillation period

D� ¼

arg max
t
ððrGN ? rSNÞðtÞÞ

Tperiod
; ð25Þ

where ? is the convolution operator and Tperiod is the oscillation period.

Information routing

We investigate whether gap junction coupling and its plasticity play a role in routing informa-

tion between networks. We consider the same system as described in the previous section,

with two subnetworks coupled with gap junctions, except here all the inhibitory neurons have

the same membrane time constant τv = 17 ms (e.g. corresponding to resonance frequency at

gamma). The first network, called the Input Network (IN) receives an input projected to its

NIN neurons (NIN = 1000) by NIN weights drawn from a uniform distribution between 0 and 1.

The second network is called the Output Network (ON, NON = 1000).

To examine if there is successful transfer of information between both networks, we

attempt to reconstruct the input signal from the ON’s population activity rON. First, we obtain

the low-pass filtered population activity of ON, rfilt, with

tr _r filtðtÞ ¼ � rfiltðtÞ þ rONðtÞ; ð26Þ

with τr = 3 ms. Then we detect the rising and falling times of the filtered population activity by

detecting when it crosses a threshold θr = 2. This gives us rising times t�k , when it crosses the

threshold from below, and falling times, when it crosses the threshold from above. We obtain

the peak intervals Tk by measuring the time difference between consecutive rising times

Tk ¼ t�kþ1
� t�k .

For Fig 5D, we plot �xk, the mean values of the input signal x between the rising times t�k and

t�kþ1
as function of their corresponding peak intervals Tk

�xkðtÞ ¼
1

Tk

Z t�kþ1

t�k

xðtÞdt: ð27Þ

We reconstruct the network input (Fig 5E and 5H) by doing a linear interpolation of the

inverse of those peak intervals Tk, so that the input signal and reconstructed input have the

same length.

x̂ðtÞ ¼
1=Tkþ1 � 1=Tk

t�kþ1 � t�k

� �

ðt � t�kÞ þ
1

Tk
; 8t 2 ½t�k ; t

�

kþ1
�: ð28Þ

Finally to estimate the quality of the reconstruction, we measure the Pearson’s correlation
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coefficient (which is invariant by affine transformation) between the input and the recon-

structed input.

In order to test the robustness of the system we measure the quality of the reconstruction

for an oscillatory input signal of which we vary the frequency f (Fig 5F) and amplitude A (Fig

5G).

xðtÞ ¼ A½cosð2pftÞ þ 1� ð29Þ

Then we measure the routing of random signals x(t) = νIN + σIN � ηIN(t), where νIN is the sig-

nal mean, σIN is the signal standard deviation, ηIN is an Ornstein Uhlenbeck fluctuation with

correlation time τx = 100 ms and unit variance. We build a dataset of 10 input signals and then

we measure the Pearson’s correlation coefficients between the input x(t) and the reconstructed

input x̂ðtÞ for those 10 inputs respectively. For Fig 5I, we scale the log-normal distribution of

the gap junction strength (see Network) with γ = 3 to set the network in the asynchronous,

with γ = 5.5 to set the gap junction near their plasticity fix point, and γ = 8 for a regime with

strong oscillations.

To study the robustness of the information routing to gap junction deletion, we randomly

delete an increasing number of gap junctions and measure the evolution of the Pearson’s cor-

relation between x and x̂. We also measure the change in the mean gap junction coupling, if

there is plasticity, between the initialization (with γ = 5.5) and the steady-state (after 6 s of

simulation).

All parameters are listed in Table 1 unless otherwise specified in a figure.

Parameters

We list in Table 1 the parameters used for our simulations.

Supporting information

S1 Table. Additional parameters. Additional parameters used for our simulations in the sup-

plementary information. Other parameters, except those mentioned in the figure captions,

remained unchanged.

(TEX)

S1 Text. Supporting information methods. Additional methods in relation to the supporting

information.

(PDF)

S1 Fig. Evolution of the mean gap junction strength for different plasticity rules: Related

to Fig 2. Four gLTP rules are considered: potentiation is either soft-bounded (A, B) or

unbounded (C, D) and the rule is activity-dependent (A,C) or passive (B, D). The evolution of

the mean gap junction coupling is represented over time, for different initial values (γm(0) =

{2, 6}) and mean network drive ν. The network drive is a colored noise current Inoise described

in Eq (11) in the main text. The value taken by ν are 50, 100, 150 or 200 pA. Lighter colors rep-

resent smaller values of ν. We observe that the value of the steady-state do not depend on the

initial value of the mean gap junction coupling. (E) Power of the main frequency component

in the Fourier domain of the population activity of inhibitory neurons for 2 seconds of simula-

tion. The blue area denotes the lack of oscillations. Labels show the steady-state of the simula-

tions designed by the same labels. Note that only the steady-states of simulations initialized

with γm(0) = 2 are shown.

(TIF)
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S2 Fig. Evolution of the mean gap junction strength for different plasticity rules, for asym-

metrical gap junctions. Same caption as S1 Fig, but for asymmetrical gap junction plasticity.

Four gLTP rules are considered: potentiation is either soft-bounded (A, B) or unbounded (C,

D) and the rule is activity-dependent (A,C) or passive (B, D). The evolution of the mean gap

junction coupling is represented over time, for different initial values (γm(0) = {2, 6}) and

mean network drive ν. The network drive is a colored noise current Inoise described in Eq (11)

in the main text. The value taken by ν are 50, 100, 150 or 200 pA. Lighter colors represent

smaller values of ν. We observe that the value of the steady-state do not depend on the initial

value of the mean gap junction coupling. (E) Power of the main frequency component in the

Fourier domain of the population activity of inhibitory neurons for 2 seconds of simulation.

The blue area denotes the lack of oscillations. Labels show the steady-state of the simulations

designed by the same labels. Note that only the steady-states of simulations initialized with

γm(0) = 2 are shown.

(TIF)

S3 Fig. Comparison of symmetrical and asymmetrical gap junction coupling: Related to

Fig 2. (A) Evolution of the mean gap junction strength when gap junctions are symmetrical

(blue continuous lines, same simulations as for panel A of S1 Fig) or asymmetrical (red dashed

lines, same simulations as for panel A of S2 Fig). Lighter colors represent lower values of the

mean network drive, going from 50 pA to 200 pA. The results shown are for the activity-

dependent, soft-bounded gLTP rule. The results are identical for the passive gLTP rules. The

initial conditions (network drive and initial mean coupling) are the same as described for S1

and S2 Figs. (B,C) Weight matrix for 10 gap junctions once the mean gap junction coupling

has reach its steady state, for symmetrical gap junctions (B) and asymmetrical gap junctions

(C). Lights colors represent stronger values of the gap junction coupling. (D) Histogram of the

individual gap junction coupling at steady state, for symmetrical gap junctions (blue), and

asymmetrical gap junctions (red).

(TIF)

S4 Fig. Phase diagrams as function of the chemical coupling: First column (A,D,G,J):

Power of the main frequency component in the Fourier domain of the population activity

(PA) of inhibitory neurons. Second column (B,E,H,K): Oscillation frequency of the network

activity. The white area represents a region where the network is not oscillating and has no

oscillation frequency. Third column (C,F,I,L): Ratio of bursting Abursting over spiking Aspiking

activity, averaged over 2 seconds. Bursting activity prevails in the light region and sparse firing

dominates in the dark region. First row (A,B,C): There is no chemical synapses. Second row

(D,E,F): The strength of chemical synapses is half of the weights used for this study. Third

row (G,H,I) The strength of chemical synapses is doubled. Last row (J,K,L): There is no inhib-

itory to inhibitory chemical synapses, but the rest of the chemical synapses have the standard

strength.

(TIF)

S5 Fig. Plasticity steady-state as function of the strength of the chemical synapses. (A) Evo-

lution of the mean gap junction strength during 30 seconds, when there is no chemical synap-

ses (purple lines), or when the strength of the chemical synapses is halved (green lines) or

doubled (red lines) in reference to the value used for this study (blue lines). The convergence

of the plasticity steady-state is observed for 2 different values of the initial mean gap junction

conductance which correspond to a network initialised in the synchronous or in the asynchro-

nous regime.

(TIF)
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gamma oscillations in connexin-36 knock-out mouse in vivo. The Journal of neuroscience: the official

journal of the Society for Neuroscience. 2003; 23(3):1013–1018.

38. Traub RD, Bibbig A, Lebeau FEN, Buhl EH, Whit MA. Cellular Mechanisms of Neuronal Population

Oscillations in The Hippocampus. 2004;

39. Ostojic S, Brunel N, Hakim V. Synchronization properties of networks of electrically coupled neurons

in the presence of noise and heterogeneities. Journal of Computational Neuroscience. 2009; 26

(3):369–392. https://doi.org/10.1007/s10827-008-0117-3 PMID: 19034642

40. Wang MH, Chen N, Wang JH. The coupling features of electrical synapses modulate neuronal syn-

chrony in hypothalamic superachiasmatic nucleus. Brain Research. 2014; 1550:9–17. https://doi.org/

10.1016/j.brainres.2014.01.007 PMID: 24440632

41. Robinson JC, Chapman CA, Courtemanche R. Gap Junction Modulation of Low-Frequency Oscilla-

tions in the Cerebellar Granule Cell Layer. The Cerebellum. 2017; p. 1–10.

42. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons.

Trends in Neurosciences. 2000; 23(5):216–222. https://doi.org/10.1016/S0166-2236(00)01547-2

PMID: 10782127

43. Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O. Distinct frequency preferences

of different types of rat hippocampal neurones in response to oscillatory input currents. The Journal of

physiology. 2000; 529 Pt 1:205–213. https://doi.org/10.1111/j.1469-7793.2000.00205.x PMID:

11080262

44. Fellous JM, Houweling aR, Modi RH, Rao RP, Tiesinga PH, Sejnowski TJ. Frequency dependence of

spike timing reliability in cortical pyramidal cells and interneurons. Journal of neurophysiology. 2001;

85(4):1782–1787. https://doi.org/10.1152/jn.2001.85.4.1782 PMID: 11287500

45. Tateno T. Threshold Firing Frequency-Current Relationships of Neurons in Rat Somatosensory Cor-

tex: Type 1 and Type 2 Dynamics. Journal of Neurophysiology. 2004; 92(4):2283–2294. https://doi.

org/10.1152/jn.00109.2004 PMID: 15381746

46. Manor Y, Rinzel J, Segev I, Yarom Y. Low-amplitude oscillations in the inferior olive: a model based on

electrical coupling of neurons with heterogeneous channel densities. Journal of neurophysiology.

1997; 77(5):2736–2752. https://doi.org/10.1152/jn.1997.77.5.2736 PMID: 9163389

47. Cachope R, Mackie K, Triller A, O’Brien J, Pereda AE. Potentiation of electrical and chemical synaptic

transmission mediated by endocannabinoids. Neuron. 2007; 56(6):1034–1047. https://doi.org/10.

1016/j.neuron.2007.11.014 PMID: 18093525

48. Wang Z, Neely R, Landisman CE. Activation of Group I and Group II Metabotropic Glutamate Recep-

tors Causes LTD and LTP of Electrical Synapses in the Rat Thalamic Reticular Nucleus. The Journal

of neuroscience: the official journal of the Society for Neuroscience. 2015; 35(19):7616–25. https://doi.

org/10.1523/JNEUROSCI.3688-14.2015

49. Turecek J, Yuen GSS, Han VZZ, Zeng XHH, Bayer KUU, Welsh JPP. NMDA receptor activation

strengthens weak electrical coupling in mammalian brain. Neuron. 2014; 81(6):1375–1388. https://doi.

org/10.1016/j.neuron.2014.01.024 PMID: 24656255

50. Turecek J, Han VZ, Carlson VCC, Grant KA, Welsh JP. Electrical Coupling and Synchronized Sub-

threshold Oscillations in the Inferior Olive of the Rhesus Macaque. The Journal of Neuroscience.

2016; 36(24):6497–6502. https://doi.org/10.1523/JNEUROSCI.4495-15.2016 PMID: 27307237

51. Coulon P, Landisman CE. The Potential Role of Gap Junctional Plasticity in the Regulation of State.

Neuron. 2017; 93(6):1275–1295. https://doi.org/10.1016/j.neuron.2017.02.041 PMID: 28334604

52. Jin NG, Ribelayga CP. Direct Evidence for Daily Plasticity of Electrical Coupling between Rod Photore-

ceptors in the Mammalian Retina. 2016; 36(1):178–184.

53. Cachope R, Pereda AE. Two independent forms of activity-dependent potentiation regulate electrical

transmission at mixed synapses on the Mauthner cell; 2012.

54. Haas JS, Greenwald CM, Pereda AE. Activity-dependent plasticity of electrical synapses: increasing

evidence for its presence and functional roles in the mammalian brain. BMC Cell Biology. 2016;

17(S1):14. https://doi.org/10.1186/s12860-016-0090-z PMID: 27230776

55. Haas JS, Zavala B, Landisman CE. Activity-dependent long-term depression of electrical synapses.

Science. 2011; 334(6054):389–393. https://doi.org/10.1126/science.1207502 PMID: 22021860

56. Sevetson J, Fittro S, Heckman E, Haas JS. A calcium-dependent pathway underlies activity-depen-

dent plasticity of electrical synapses in the thalamic reticular nucleus. The Journal of Physiology. 2017;

00:1–14.

Gap junction plasticity as a mechanism to regulate network-wide oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006025 March 12, 2018 26 / 29

https://doi.org/10.1016/S0896-6273(01)00387-7
http://www.ncbi.nlm.nih.gov/pubmed/11516404
https://doi.org/10.1007/s10827-008-0117-3
http://www.ncbi.nlm.nih.gov/pubmed/19034642
https://doi.org/10.1016/j.brainres.2014.01.007
https://doi.org/10.1016/j.brainres.2014.01.007
http://www.ncbi.nlm.nih.gov/pubmed/24440632
https://doi.org/10.1016/S0166-2236(00)01547-2
http://www.ncbi.nlm.nih.gov/pubmed/10782127
https://doi.org/10.1111/j.1469-7793.2000.00205.x
http://www.ncbi.nlm.nih.gov/pubmed/11080262
https://doi.org/10.1152/jn.2001.85.4.1782
http://www.ncbi.nlm.nih.gov/pubmed/11287500
https://doi.org/10.1152/jn.00109.2004
https://doi.org/10.1152/jn.00109.2004
http://www.ncbi.nlm.nih.gov/pubmed/15381746
https://doi.org/10.1152/jn.1997.77.5.2736
http://www.ncbi.nlm.nih.gov/pubmed/9163389
https://doi.org/10.1016/j.neuron.2007.11.014
https://doi.org/10.1016/j.neuron.2007.11.014
http://www.ncbi.nlm.nih.gov/pubmed/18093525
https://doi.org/10.1523/JNEUROSCI.3688-14.2015
https://doi.org/10.1523/JNEUROSCI.3688-14.2015
https://doi.org/10.1016/j.neuron.2014.01.024
https://doi.org/10.1016/j.neuron.2014.01.024
http://www.ncbi.nlm.nih.gov/pubmed/24656255
https://doi.org/10.1523/JNEUROSCI.4495-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27307237
https://doi.org/10.1016/j.neuron.2017.02.041
http://www.ncbi.nlm.nih.gov/pubmed/28334604
https://doi.org/10.1186/s12860-016-0090-z
http://www.ncbi.nlm.nih.gov/pubmed/27230776
https://doi.org/10.1126/science.1207502
http://www.ncbi.nlm.nih.gov/pubmed/22021860
https://doi.org/10.1371/journal.pcbi.1006025


57. Beardslee MA, Laing JG, Beyer EC, Saffitz JE. Rapid turnover of connexin43 in the adult rat heart.

Circ Res. 1998; 83(6):629–635. https://doi.org/10.1161/01.RES.83.6.629 PMID: 9742058

58. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, et al. Multicolor and electron micro-

scopic imaging of connexin trafficking. Science. 2002; 296(5567):503–507. https://doi.org/10.1126/

science.1068793 PMID: 11964472

59. Boassa D, Solan JL, Papas A, Thornton P, Lampe PD, Sosinsky GE. Trafficking and recycling of the

connexin43 gap junction protein during mitosis. Traffic. 2010; 11(11):1471–1486. https://doi.org/10.

1111/j.1600-0854.2010.01109.x PMID: 20716111

60. Carette D, Gilleron J, Denizot JP, Grant K, Pointis G, Segretain D. New cellular mechanisms of gap

junction degradation and recycling. Biology of the Cell. 2015; 107(7):218–231. https://doi.org/10.1111/

boc.201400048 PMID: 25818265

61. Wang HY, Lin YP, Mitchell CK, Ram S, O’Brien J. Two-color fluorescent analysis of connexin 36 turn-

over: relationship to functional plasticity. Journal of cell science. 2015; 128(21):3888–3897. https://doi.

org/10.1242/jcs.162586 PMID: 26359298

62. Szoboszlay M, LÅ?rincz A, Lanore F, Vervaeke K, Silver RA, Nusser Z. Functional Properties of Den-

dritic Gap Junctions in Cerebellar Golgi Cells. Neuron. 2016; 90(5):1043–1056. https://doi.org/10.

1016/j.neuron.2016.03.029 PMID: 27133465

63. Izhikevich EM. Dynamical Systems in Neuroscience: The Geometry of Excitablity and Bursting; 2007.

64. Pereda AE, Faber DS. Activity-dependent short-term enhancement of intercellular coupling. The Jour-

nal of neuroscience: the official journal of the Society for Neuroscience. 1996; 16(3):983–992.

65. Kann O. The energy demand of fast neuronal network oscillations: insights from brain slice prepara-

tions. Frontiers in pharmacology. 2011; 2:90. https://doi.org/10.3389/fphar.2011.00090 PMID:

22291647

66. Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nature

Reviews Neuroscience. 2001; 2(8):539–550. https://doi.org/10.1038/35086012 PMID: 11483997
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