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Abstract

During the exploration of novel environments, place fields are rapidly formed in hippocampal

CA1 neurons. Place cell firing rate increases in early stages of exploration of novel environ-

ments but returns to baseline levels in familiar environments. Although similar in amplitude

and width, place fields in familiar environments are more stable than in novel environments.

We propose a computational model of the hippocampal CA1 network, which describes the

formation, dynamics and stabilization of place fields. We show that although somatic disinhi-

bition is sufficient to form place fields, dendritic inhibition along with synaptic plasticity is

necessary for place field stabilization. Our model suggests that place cell stability can be

attributed to strong excitatory synaptic weights and strong dendritic inhibition. We show

that the interplay between somatic and dendritic inhibition balances the increased excitatory

weights, such that place cells return to their baseline firing rate after exploration. Our model

suggests that different types of interneurons are essential to unravel the mechanisms under-

lying place field plasticity. Finally, we predict that artificially induced dendritic events can

shift place fields even after place field stabilization.

Author summary

Hippocampal pyramidal neurons are thought to encode spatial information. A subset of

these cells, named place cells, are active only when the animal traverses a specific region

within the environment. Although vastly studied experimentally, the development and

stabilization of place fields are not fully understood. Here, we propose a mechanistic

model of place cell formation in the hippocampal CA1 region. Using our model, we repro-

duce place field dynamics observed experimentally and provide a mechanistic explanation

for the stabilization of place fields. Finally, our model provides specific predictions on pro-

tocols to shift place field location.
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Introduction

The hippocampus encodes spatial information through a subset of pyramidal cells—the place

cells—that fires action potentials when the animal is in a specific location within the environ-

ment—the place fields [1, 2, 3, 4]. These neurons are thought to encode and store new memo-

ries by taking part in activity-dependent synaptic plasticity [5, 6, 7, 8, 9]. How these place fields

are formed is not clear and recent experimental data, while unravelling specific parts of the

mechanisms underlying place cell dynamics, have also opened up some puzzling questions,

especially when put together [9, 10, 11, 12, 13, 14, 15, 16]. Although here we focus on the role

of hippocampal cells in spatial memory development, the hippocampus is also associated with

other types of memories [17, 18], and the principles governing place field dynamics are likely

to be common across several types of hippocampal memory formation.

Subthreshold responses of silent cells, when recorded at the soma, are not place-tuned [13].

If a spatially uniform current is applied to a silent cell, however, this cell starts to produce

place-tuned activity [12]. This transition from silent to place cell is abrupt and once the silent

cell is turned into a place cell, the amplitude of the place field is fairly independent of the

amplitude of the applied current [12]. Furthermore, once the external, spatially uniform cur-

rent is removed, the cell returns to its silent, untuned state [12]. These results suggest that silent

cells receive place-tuned inputs even though there is no signature of those inputs at the soma.

Therefore, inputs from dendrites are thought to be nonlinearly propagated to the soma with

the somatic depolarization acting as a gate for this propagation [12]. The functional conse-

quences of this gating for the hippocampal network have not been fully explored. For instance,

it is not clear which elements of the network are responsible for modulating this dendrite-to-

soma propagation.

There is increasing evidence suggesting that place fields are not formed from homo-

geneously distributed place-tuned inputs [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

Instead, spatial representation might be built from the selection of already strong connections,

without the need for synaptic plasticity [12, 23, 24, 25]. For instance, many place fields,

although not stable, are present from the animal’s first traversal of a novel environment [11, 13,

14, 26]. Furthermore, additional place cells are formed mainly during the first few laps of explo-

ration [11]. This poses a question for the role of synaptic plasticity in place field development.

During the exploration of a novel linear track, new place fields are formed over several laps

[11]. The development of these new place fields has been shown to be preceded by dendritic

regenerative events—backpropagating action potentials or dendritically generated spikes [11,

29]—which are promoted by a reduction in dendritic inhibition through the suppression of

somatostatin-expressing (SST) interneuron activity [11]. These dendritic events can be associated

with a myriad of factors such as dendritic disinhibition [16, 30, 31], back-propagating action

potentials [7, 32, 33, 34], NMDA spikes [35, 36, 37], or plateau potentials [38, 39, 40, 41]. More

recently, the conjunctive activation of presynaptic inputs and postsynaptic calcium plateau poten-

tials have been applied to artificially induce new place fields [15, 38]. Additionally, place fields

have also been induced following juxtacellular stimulation of CA1 silent cells [42]. Although den-

dritic disinhibition has been implicated in place field development [11], it is still not clear which

role the different types of interneuron play in place field formation and stabilization.

CA1 pyramidal cell depolarization is initially low but rapidly increases during exploration of

novel environments [10], which might be linked to a quick increase in place cell firing rate in

early stages of exploration [10, 14]. Surprisingly, in familiar environments, subthreshold ramp

of depolarization associated with place field firing returns to a lower level, comparable to the

level observed during the initial exploration of novel environments [10]. Remarkably, although

the level of CA1 pyramidal cell depolarization is similar in the first stages of exploration of
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novel environments and in familiar environments, place fields in familiar environments have

been shown to be considerably more stable [4, 10, 21, 22], and complex spike-mediated synap-

tic plasticity has been suggested to be involved in this stabilization [10]. Moreover, the blockage

of NMDA receptors in CA1 neurons has been shown to significantly decrease the number of

new place fields being formed across the network [11]. These results suggest that synaptic plas-

ticity is not required for the formation of place fields but is involved in the development of new

place cells and stabilization of spatial representations. Therefore, these results lead to the ques-

tion of what role synaptic plasticity plays in place field stabilization.

Several computational models have been proposed to account for place field development

[16, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. The interaction between excitatory and

inhibitory plasticity has been shown to lead to the development of place fields in initially

untuned pyramidal cells [43]. Alternatively, attractor network models have been proposed as

more abstract models of hippocampal circuit dynamics [50, 51, 52, 53, 54, 55, 56] and some

models have even been extended to more than two dimensions [47]. Even though these models

account for the origin of spatially tuned inputs onto place cells, they do not take into account

individual interneuron types and their modulation during exploration of novel environments.

All these questions call for a simplified computational model that can account for place

field formation and stabilization in order to understand the mechanisms underlying these pro-

cesses. We therefore develop a data-driven model of the hippocampal CA1 network. We show

that somatic disinhibition, together with spatially modulated inputs, is sufficient to form place

fields. However, dendritic inhibition and synaptic plasticity allow for silent cells to turn into

stable place cells. We show that the combined action of somatic and dendritic inhibition bal-

ances an increase in excitatory weights due to synaptic plasticity, so that place cells after explo-

ration return to their baseline firing rate. Our model suggests that place cell stability is due to

large excitatory synaptic weights and large dendritic inhibition. Therefore, our model suggests

that different types of interneurons are essential to unravel the mechanisms underlying place

field plasticity. Finally, we use our model to predict how to perturb place fields. Artificially

induced dendritic events in place cells can shift place field location even after place field stabili-

zation. Our model reproduces a wide range of observations from the hippocampal CA1 net-

work, provides a circuit-level understanding, and finally makes predictions that can be tested

in future experiments. Importantly, our model suggests that interneuron diversity is crucial

for the emergence of place fields and their consolidation.

Results

In all simulations, we model CA1 pyramidal neurons as two-compartment, rate-based neu-

rons (Fig 1A), derived from a reduction of a detailed two-compartment spiking neuron

model [57]. The neurons are composed of a non-linear dendritic unit, that accounts for den-

dritic spikes, and a perisomatic unit (Fig 1A). In our model, the activity (or rate) of these

compartments can be related to either their spiking rate or a rectified version of its local volt-

age. In the hippocampal CA1 subregion, place cells can be observed even during the first

stages of exploration of novel environments [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28] and silent cells can be quickly turned into place cells upon the injection of a spatially uni-

form current [12]. Therefore, we assume that all CA1 cells—both active and silent cells—

receive place-tuned inputs which are projected onto their dendrites while the animal

explores an environment. Additionally, the propagation of dendritic activity to the soma is

not uniform and, in particular, can be modulated by somatic depolarization [12, 58]. In

our model, the propagation of inputs from dendrites to soma is gated by the somatic “poten-

tial” which is determined by the total input projected directly onto the perisomatic unit
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(Fig 1A, see Methods). This gating does not block all the inputs to the perisomatic compart-

ment, but only the inputs being propagated from the dendritic compartment. To account for

changes in synaptic connections, we implement an activity-dependent synaptic plasticity

rule. Synaptic potentiation has been shown to be dependent on the activation of presynaptic

terminals paired with strong postsynaptic dendritic depolarization [7, 9, 15, 33, 37, 40]. For

the sake of simplicity, we assume that synaptic plasticity depends on presynaptic activity and

postsynaptic dendritic activation only (Fig 1A, see Methods for details). Moreover, the simu-

lated CA1 pyramidal cells receive inhibitory inputs from two types of interneurons: den-

drite-targeting interneurons (thought of as a subset of SST cells) and soma-targeting

interneurons (thought of as a subset of parvalbumin-expressing cells) (Fig 1A). The inter-

neuron activity is assumed to be spatially uniform [16]. Finally, Sheffield et al. [11] have

shown that the exploration of novel environments modulates CA1 interneuron activity in an

interneuron-type-specific manner [11]. They observed a decrease in SST interneuron activity

accompanied by an increase in parvalbumin-expressing (PV) interneuron activity that lasts

for tens of seconds when the animal enters a novel environment [11]. In our model, we

Fig 1. Somatic disinhibition is sufficient to transiently turn silents cells into place cells. (A) Network diagram. Pyramidal neurons receive place-

tuned, excitatory input and inputs from two types of interneurons: dendrite-targeting (DT), representing somatostatin-expressing interneurons, and

soma-targeting (ST), representing parvalbumin-expressing interneurons. The propagation of inputs from dendrites to soma is gated by the somatic

“potential” (see Methods). The CA1 pyramidal cell is modelled as a two-compartment neuron model with a nonlinear dendritic unit and a perisomatic

unit. (B) Diagram of a silent cell being turned into a place cell following spatially uniform somatic depolarization. The depolarization is induced by the

injection of a constant current at the somatic compartment. (C) Pyramidal cell somatic activity as a function of the animal position for three different

amplitudes of external injected current: zero, 1.0 and 1.5. (D) Difference between peak and baseline somatic activity as a function of the external

somatic input. Because of the gated propagation of inputs from dendrites to soma, there is an abrupt transition from silent to place cell. (E)

Subthreshold somatic activity (Vsoma) as a function of the animal position for a silent cell. Although the neuron is receiving place-tuned input onto its

dendritic compartment, the neuronal subthreshold somatic activity is spatially uniform due the gated dendrite-to-soma propagation. (F) Subthreshold

somatic activity (Vsoma) as a function of the animal position for a place cell.

https://doi.org/10.1371/journal.pcbi.1007955.g001
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hypothesize the existence of a novelty signal responsible for modulating interneuron activity

once the animal enters a new environment (Fig 2A, see Methods). This novelty signal

increases instantly once the animal enters the environment and decays exponentially with a

time constant of 100 s (see Methods). This novelty signal leads to the suppression of den-

drite-targeting inhibition and the amplification of soma-targeting inhibition (Fig 2A). Both

interneuron activities slowly return to baseline levels as the novelty signal fades away.

Somatic disinhibition is sufficient to transiently turn silent cells into place

cells

We first investigate how silent cells can be transiently turned into place cells through the injec-

tion of a spatially uniform current [12]. We simulate 10 input neurons, which could be thought

of as part of CA3, projecting onto one postsynaptic CA1 neuron. Here, we assume that the ani-

mal is running through a familiar environment and, therefore, there is no novelty signal and

the interneuron activity is constant throughout these simulations. For simplicity, all presynap-

tic neurons are assumed to have time-invariant, uniformly distributed place fields, spanning

over the entire track. These presynaptic neurons project onto one postsynaptic CA1 neuron

through non-uniform connections. Although not uniform, the initial synaptic weights are

such that the postsynaptic CA1 cell is silent during the first lap of exploration. During the sec-

ond lap of exploration, an external, spatially uniform depolarizing current is applied to the

somatic compartment. Since plasticity is slow, synaptic weights are not significantly changed

from the first to the second lap. However, because the propagation of inputs from dendrites to

soma is gated by somatic depolarization, silent cells are rapidly turned into place cells in an all-

or-nothing manner (Fig 1B–1D). For weak external currents, silent cells remain silent (Fig 1C,

Iext = 0). For sufficiently strong external currents, however, silent cells are turned into place

cells (Fig 1C, Iext = 1.0 and Iext = 1.5), in agreement with experiments [12]. Furthermore, the

transition from silent to place cell is abrupt. Under the condition that the amplitude of the

injected current is above a certain threshold, the neuron is turned into a place cell and the

amplitude of the place field does not depend on the amplitude of the injected current (Fig 1D).

If the external current is removed, the neuron becomes silent again. This all-or-nothing behav-

ior is a direct consequence of the gated propagation of inputs from dendrites to soma. In our

model, if this gating is removed, silent cells are instead gradually turned into place cells and

the amplitude of its place field increases linearly with the external current (S1 Fig). The gating

mechanism in our simulations does not prevent the perisomatic compartment from receiving

inputs. Instead, the subthreshold somatic activity in silent cells fluctuates according to these

inputs whereas place-tuned inputs arriving at the dendritic compartment are filtered (Fig 1E).

Place cells, however, exhibit place-tuned subthreshold activity (Fig 1F). Therefore, our model

indicates that silent cells can be transiently turned into place cells due to a combination of two

features: silent cells receive place-tuned input and the propagation of these inputs from den-

drites to soma is gated by somatic depolarization. Since the somatic input is also controlled

by soma-targeting inhibitory neurons, these cells could also act as a gate for the propagation

of inputs from dendrites to soma and therefore as a rapid mechanism to turn silent cells into

place cells.

Dendritic disinhibition and synaptic plasticity promote the development of

place cells

Using our model, we next investigate whether there is an alternative mechanism underlying

place field formation from originally silent cells (Fig 2A and 2B). As before, we simulate 10

input neurons projecting onto one postsynaptic CA1 neuron. Synaptic connections from
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Fig 2. Dendritic disinhibition and synaptic plasticity promote the development of place cells. (A) Network diagram similar to Fig 1A. The activity

of interneurons is modulated during the exploration of novel environments. DT interneuron activity (top black curve) decreases, whereas ST

interneuron activity (bottom black curve) increases in novel environments. Both interneuron activities gradually return to baseline levels with a

timescale defined by the hypothesized novelty signal (red curve, see Methods and main text for details). Synaptic connections from input neurons to

CA1 pyramidal cells are updated following a Hebbian-type learning rule dependent on presynaptic activity and postsynaptic dendritic activation. (B)

Diagram of a silent cell being turned into a place cell after several laps of exploration of a novel environment (see Methods). (C) Silent cell turns into

place cell following exploration of a novel environment. Evolution of dendritic (left) and somatic (middle) activity during exploration of a novel

environment for an initially silent cell. Amplitude of novelty signal over laps (right, red). Dendritic activity precedes somatic activation, in agreement

with experiments [11]. Somatic activity increases abruptly due to the gated propagation of dendritic inputs (see Methods). (D) Evolution of mean

dendritic and somatic activity for one example neuron. The neuron is initially silent (no somatic activity) and is turned into a place cell after several laps

of exploration. (E) Evolution of synaptic weights for the same example cell shown in C. Inset: first 10% (50 s) of exploration. (F) Evolution of average

synaptic input over laps for the same example cell as in C. (G) Initial (dashed) and final (solid) synaptic inputs as a function of the animal position

for the same example cell as in C. The synaptic input was measured as the convolution between initial/final synaptic weights and the input neuron

activities.

https://doi.org/10.1371/journal.pcbi.1007955.g002
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input neurons to the postsynaptic neuron are plastic and their change depends on the activity

of the postsynaptic dendritic compartment. Here, the animal explores a novel environment for

several laps. Inspired by the experiments from Sheffield et al. [11], we simulate a “novelty sig-

nal”, so that the activity of dendrite-targeting interneurons is initially low in novel environ-

ments and increases gradually while the environment is becoming familiar, whereas the

activity of soma-targeting interneurons is initially high and gradually decreases (Fig 2A). Sim-

ulating our model reveals that the reduction in dendrite-targeting inhibition increases den-

dritic activity in pyramidal cells, regardless of their somatic activity (Fig 2C). This dendritic

activation leads to a quick strengthening in synaptic weights (Fig 2E–2G). The combination of

stronger synaptic weights and a later decrease in soma-targeting inhibition finally leads to the

development of place-tuned somatic activity (Fig 2C and 2D). Therefore, our model suggests

that the combination of dendritic activity-dependent synaptic plasticity and novelty-modu-

lated interneuron activity can turn silent cells into place cells. Interestingly, dendritic activity

in simulated CA1 neurons precedes and predicts place field development in silent cells, consis-

tent with the experimental findings from Sheffield et al. [11].

The interplay between somatic and dendritic inhibition balances increased

excitatory synaptic weights so that place cell firing returns to baseline

Next, we use our model to study neurons that are initially active when the animal enters a new

environment (Fig 3A). We aim to understand the mechanisms that could lead to place field

stabilization and that underlie place field dynamics. As before, our model consists of a CA1

cell receiving place-tuned inputs. But here, the synaptic weights are such that the neuron is

active since the first lap of exploration (Fig 3B–3E, blue traces). The initially low dendritic inhi-

bition in our model leads to the activation of dendritic compartments and thus the strengthen-

ing of synaptic weights. Stronger synaptic weights produce a stronger neuronal response (Fig

3B–3E, purple traces). However, as the animal explores the environment, the novelty signal

gradually dissipates, resulting in the increase in dendritic inhibition and thus in a lower activa-

tion of the dendritic compartment (Fig 3C, orange trace). The lower level of somatic inhibition

in familiar environments allows the neuron to exhibit the same level of activity as it exhibited

during the first stages of exploration, even under reduced dendritic activation (Fig 3E, orange

trace, and Fig 3F). Our model is therefore consistent with the experimental data showing that

CA1 pyramidal cell depolarization increases in early stages of novel environment exploration

and later returns to initial levels in familiar environments [10]. The novelty signal hypothe-

sized in our model plays a key role in this behavior and removing it from our simulations leads

to a higher neuronal activity in familiar rather than novel environments (S1 Fig). Importantly,

although the neuronal firing on the first and last laps are indistinguishable, the network states

are completely different. During the first lap, the neuron receives weak excitatory input, weak

dendritic inhibition, and strong somatic inhibition (Fig 3G). Synaptic plasticity then leads to

the strengthening of synaptic weights, forming strongly-tuned connections (Fig 3F and 3G).

Finally, the decay of the novelty signal leads to a slow shift in soma- and dendrite-targeting

inhibition. During the last lap—when the environment is familiar—the neuron receives strong

excitatory input, strong dendritic inhibition, and weak somatic inhibition (Fig 3G). Therefore,

the intricate interplay between excitatory plasticity and somatic and dendritic inhibition leads

to the development of a new network structure. Although this new state presents the same net-

work output, it might have different stability properties.

Although our simulations were performed using a simplified, rate-based neuron, the same

results can be achieved using a biophysical, spatially extended neuron model (S2 Fig). In this

case, a spiking neuron increases its firing rate over the first few laps of exploration of a novel
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environment which later returns to baseline level when the novelty signal fades away (S2 Fig).

To further explore the robustness of our model, we rerun our simulations using our rate-based

neuron but modifying specific aspects of the model. Firstly, we consider the case in which the

novelty signal is also applied to the inputs, resulting in an initially higher place-tuned excit-

atory input. In this case, CA1 place fields evolve similarly to before (S3 Fig). Initial place fields,

Fig 3. The interplay between somatic and dendritic inhibition balances increased excitatory synaptic weights so that place cell firing returns to

baseline. (A) Diagram of an unstable place cell becoming stable after several laps of exploration of a novel environment (see Methods). Place cells are

assumed to be unstable due to their sensitivity to noise. (B) Evolution of dendritic activity for an example place cell. Inset: first 10 laps of exploration.

(C) Dendritic activity as a function of the animal’s position for three stages of the simulation: lap 1 (top, blue; blue dashed line in (B)), lap 5 (middle,

purple; purple dashed line in (B)), and lap 100 (bottom, orange; orange dashed line in (B)). (D) Evolution of somatic activity for the same cell as in (B).

Inset: first 10 laps of exploration. (E) Somatic activity as a function of the animal’s position for three stages of the simulation: lap 1 (top, blue; blue

dashed line in (D)), lap 5 (middle, purple; purple dashed line in (D)), and lap 100 (bottom, orange; orange dashed line in (D)). (F) Evolution of mean

dendritic (dashed line) and somatic (solid line) activity for the same example cell as in (B) and (D). Stars indicate laps 1 (blue), 5 (purple) and 100

(orange). Both somatic and dendritic activities increase sharply during the first laps of exploration due to synaptic plasticity. Inset: first 10 laps of

exploration. (G) Diagram showing the changes in the network from the first to the last lap of exploration. Initially (left, blue), input synaptic weights are

weak, dendritic inhibition is low and somatic inhibition is high. Next, synaptic weights are quickly strengthened through activity-dependent synaptic

plasticity (middle, purple). During the final lap (right, orange), some input synaptic weights are strong, dendritic inhibition is high and somatic

inhibition is low. Therefore, although place field amplitude and width are the same in the first and last lap (D blue and orange), the network is in a

different state.

https://doi.org/10.1371/journal.pcbi.1007955.g003
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however, are stronger in these conditions (S3 Fig). Next, we modify the neuronal motif used

in our simulations by including recurrent connections to account for feedback inhibition (S4

Fig). The feedback inhibition attenuates the amplitude of the final place field without affecting

the qualitative behavior of place field evolution (S4 Fig). Finally, synaptic plasticity can be

induced by non-coincident activity following a learning rule that spans over seconds [15]. In

order to introduce this behavioral-time-scale plasticity in our model, we implemented a learn-

ing rule that potentiates synaptic weights for neurons that are active together within a time

window in the order of seconds (S5 Fig, see S1 Methods). This learning rule results in a compe-

tition amongst a larger number of inputs, leading to initially wider place fields (S5 Fig). Never-

theless, the evolution of place fields follows a similar pattern as the one we observed with a

simple hebbian learning rule. The amplitude of place fields is initially low and transiently

increases before returning to a lower level (S5 Fig). Therefore, the results observed with our

model are robust to more complex or extended models.

Large excitatory synaptic weights and large dendritic inhibition provide

place cell stability

We next investigate whether place fields in familiar environments are more stable than at the

beginning of the exploration phase in novel environments—despite being similar in amplitude

and width. Place fields have been shown to be unreliable and to change abruptly from lap to

lap in novel environments [10]. We speculate that this variability is caused by the place field’s

sensitivity to noise rather than synaptic plasticity processes. We assume that the place field can

be affected by three sources of noise: (i) noise on the place fields of presynaptic neurons, (ii)

noise on the firing rates of presynaptic neurons, or (iii) noise on synaptic weights, accounting,

for example, for synaptic turnover or synaptic failure (Fig 4). In all three cases, we compare the

effect of noise on place fields at the beginning of exploration (Fig 4, blue curves) to its effect on

place fields at the end of exploration (Fig 4, orange curves; see Methods). In case (i), we assume

that the amplitudes of presynaptic place fields are not all the same. Instead, we multiply each

place field by a random number whose variance increases with the noise amplitude (see

Methods). As expected, the more noise we impose, the less stable place cells are (Fig 4A). How-

ever, the noise on presynaptic place fields is more effective at destabilizing place cells in the

first lap of exploration than at the end of exploration (Fig 4A), suggesting that place cells

become more stable. In case (ii), we assume that all presynaptic place fields have the same

amplitude but input neurons can also fire at any time with probability p. This probability

increases linearly with noise amplitude. Again, place fields at the final lap are more stable

than initial place fields (Fig 4B). In case (iii), we change synaptic weights by random amounts

drawn from a normal distribution whose variance is proportional to the noise amplitude.

Once again, this source of noise has a stronger effect on place fields on initial laps of explora-

tion (Fig 4C). In all three cases, the stabilization of place fields results from increased synaptic

weights and higher dendritic inhibition (Fig 3G). Therefore, place fields in familiar environ-

ments are more stable to noise than place fields at the beginning of exploration of novel envi-

ronments, consistent with experimental observations [10].

In order to investigate the role of each component of the network in stabilizing place fields,

we artificially modify the final state of the network while keeping the neuron’s place field

unchanged. We first reduce the amplitude of both excitatory weights and dendritic inhibition

(S6A Fig). The reduced synaptic weights decrease place field stability when noise is added on

the synaptic weights (S6B Fig). Next, we reduce dendritic inhibition and increase somatic

inhibitory input (S6C Fig). Since synaptic weights are strong and dendritic inhibition is low,

the postsynaptic neuron is more susceptible to presynaptic inputs. Thus, noise on presynaptic
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neurons is carried on to postsynaptic place fields, destabilizing them (S1D Fig). In summary,

strong synaptic connections are relatively less affected by noise on synaptic weights, whereas

higher dendritic inhibition cancels out-of-field fluctuations being transmitted from presynap-

tic neurons.

We next investigate whether dendritic nonlinearity can contribute to stable place field devel-

opment. While our model has indicated that dendritic disinhibition opens a window for synap-

tic plasticity and promotes place cell development, we hypothesize that dendritic nonlinearities

might promote place cell stability by ensuring that the location of a place field does not change

once the place field is developed. In our model, when inputs are strong enough, they can induce

dendritic spikes, which in turn lead to strong potentiation. Because of competition mechanisms

such as synaptic normalization, the remaining inputs are depressed, pushing them further away

from the threshold for dendritic events. Without dendritic nonlinearities, the noise could be

enough to counter-balance this competition, leading to unstable place fields. As such, dendritic

spikes—or dendritic nonlinearities—might form a mechanism for reliably selecting presynaptic

inputs. To test this hypothesis, we simulate our model with initially uniform synaptic weights

and no novelty signal. We then compare it with an alternative model where dendrites do not

have an amplifying nonlinearity but can reach the same maximum level of activity (linear den-

drites, S7A and S7B Fig). Neurons with a dendritic nonlinearity develop place fields faster and,

importantly, more reliably (S7C Fig). In several cases, neurons with linear dendrites do not

develop place fields and their activities vary from lap to lap (S7D Fig). Contrarily, neurons with

Fig 4. Large excitatory synaptic weights and large dendritic inhibition provide place cell stability. (A-C) Effect of noise on place fields for the first

(blue) and last (orange) laps of exploration.(A) Destabilization of place fields by noise on presynaptic place fields. We measure the change on

postsynaptic place field following changes on presynaptic place field amplitudes (see Methods). (B) Destabilization of place fields by noise on

presynaptic firing rates. We measure the change on postsynaptic place field following the addition of a noisy input to presynaptic neurons (see

Methods). (C) Destabilization of place fields by noise on synaptic weights. We measure the change in postsynaptic place field following changes on

synaptic weights (see Methods). For all three sources of noise (A-C), the effect of the noise over place fields is higher in the first lap than in the last lap.

https://doi.org/10.1371/journal.pcbi.1007955.g004
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a dendritic nonlinearity consistently develop stable place fields. Therefore, our model suggests

that dendritic nonlinearities might contribute to place field development and stability by pro-

moting a reliable selection of inputs.

Artificially induced dendritic events induce place field plasticity

Using our model, we next explore whether it is possible to perturb or change single CA1 place

fields [15, 38, 40, 42]. We simulate a single neuron receiving place-tuned input such that one

of its input synapses is stronger than the remaining connections. We assume that the animal is

exploring a novel environment. As such, interneuron activity is modulated by a novelty signal

that decays over time. The stronger synaptic weight leads to the activation of the postsynaptic

neuron, which leads to the strengthening of that synaptic weight (Fig 5A and 5B, see Methods).

This positive feedback loop leads to the development of a strong place field when the environ-

ment becomes familiar (Fig 5B).

We then test whether we can shift the tuning of the place field towards a new location by

artificially activating CA1 neurons. In order to do that, we simulate the network until the nov-

elty signal is negligible—the environment is hence considered familiar—and the postsynaptic

place field is stable. At this stage, we inject an extra current in the dendritic compartment of

the simulated neuron to induce a strong dendritic activity. The current is injected in the den-

dritic compartment because, in our model, the synaptic plasticity is assumed to depend on

dendritic activation only. This current is induced only in a small region within the track, far

from the peak of the postsynaptic place field (Fig 5, see Methods). The induction of extra den-

dritic activity over one lap does not alter the postsynaptic place field (Fig 5B). We next induce

the extra dendritic activity over several (15) laps. In this case, the position of the place field is

shifted towards the new location (Fig 5D). For an intermediate number of induction laps, the

initial place field is removed without the formation of a new place field, thus turning the place

cell into a silent cell (Fig 5C, S8C Fig). Note that this newly formed silent cell can potentially

redevelop a place field in case there is remaining dendritic activity. This dendritic activity

allows for plasticity, and therefore for the re-emergence of a place field (S3B Fig). Altogether,

our model predicts that, if induced over enough laps, artificial dendritic activity can shift place

field location.

The size of the induction region might affect the efficacy to shift place field location. We

hypothesized that shifting place fields would be easier with a larger induction region. To inves-

tigate this, we increase the induction area to three times its original size. In this case, the induc-

tion over one lap is enough to remove the initial place field, but not enough to induce the

formation of a new one (Fig 5E). In contrary to what we hypothesized, the induction over 15

laps—which is enough to induce the development of a new place field for a small induction

area—is not enough to promote the development of a new place field (Fig 5F). The larger the

induction area, the easier it is to remove the initial place tuning (Fig 5G). Nevertheless, a large

induction area leads to a competition between inputs within that area. Because of that, our

model predicts that, surprisingly, the larger the induction region, the more induction laps are

needed to induce the development of new receptive fields (Fig 5H).

We next compare the induction of place field shift in novel and familiar environments. We

hypothesize that in novel environments, place fields should be more plastic and, therefore, it

should be easier to induce a shift in place field location. In order to test this, we induce den-

dritic activity on lap 5 instead of 100. As shown above, the induction protocol in familiar envi-

ronments has to be applied over several laps to successfully induce place field shift. In novel

environments, conversely, applying the induction protocol over a few laps is enough to induce

the development of a new place field. Indeed, the induction of dendritic activity over 4 laps is
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Fig 5. Artificially induced dendritic events induce place field plasticity. (A) Single-cell diagram. (B-D) Evolution of place fields for the case in which

an extra current is applied to the postsynaptic neuron while the animal traverses a small section (15%) of the track. Yellow bar indicates the induction

region in which the extra current is applied. Dashed line indicates the position of the peak of the initial place field. Blue arrow indicates the first

induction lap (lap 100). Red curve shows the evolution of the novelty signal over laps. (B) Place field evolution for 1 induction lap. Place fields are not

disturbed following the application of extra current. (C) Place field evolution for 5 induction laps. Place fields are removed by the application of extra

current. (D) Place field evolution for 15 induction laps. Place fields are shifted towards a new position determined by the region of extra current

application. (E-F) Evolution of place fields for the case in which an extra current is applied to the postsynaptic neuron while the animal traverses a large

section (45%) of the track. Yellow bar indicates the induction region in which the extra current is applied. Dashed line indicates the position of the peak

of the initial place field. Blue arrow indicates the first induction lap (lap 100). Red curve shows the evolution of the novelty signal over laps. (E) Place

field evolution for 1 induction laps. Place fields are removed by the application of extra current. (F) Place field evolution for 15 induction laps. Place

fields are removed by the application of extra current. (G) Number of induction laps required to remove stable place field for small and large induction

areas. (H) Number of induction laps required to shift place field location for small and large induction areas. (I) Evolution of place fields for the case in

which an extra current is applied during exploration of a novel environment (lap 5). The extra current is applied to the postsynaptic neuron while the

animal traverses a large section (45%) of the track. Yellow bar indicates the induction region in which the extra current is applied. Dashed line indicates

the position of the peak of the initial place field. Blue arrow indicates the first induction lap (lap 5). Red curve shows the evolution of the novelty signal

over laps. (J) Number of induction laps required to shift place field location for novel and familiar environments. (K) Evolution of place fields for the
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sufficient to shift place field location (Fig 5I and 5J). We then compare the artificial induction

of place field shift with the development of place fields following naturally occurring dendritic

spikes (here detected as dendritic activity crossing a threshold for non-linear amplification, see

S1 Methods and S1 Table). In our simulations, natural dendritic spikes need, on average, less

than 2 laps to induce the development place fields whereas artificially induced dendritic spikes

need at least 4 laps to induce a shift in receptive field location in novel environments (S8G

Fig). Naturally occurring dendritic spikes are more efficient because they promote the potenti-

ation of already strong synaptic weights, whereas artificially induced activity usually has to

recruit weak connections. As initially hypothesized, our model indicates that we need fewer

induction laps to induce place field shift in novel environments than in familiar ones. This

extra plasticity of place fields in novel environments is due to two factors: synaptic weights are

not yet strongly tuned in the first laps, and the novelty signal induces an increase in postsynap-

tic dendritic activity.

Finally, we investigate whether we can artificially manipulate the interneuron activity in

familiar environments so that the model returns to the state it is found in novel environments.

In particular, place fields could become more plastic following the manipulation of interneu-

ron activity. To test that, we run the simulations for 100 laps—until the environment becomes

familiar. At lap 100, we decrease dendrite-targeting inhibition and increase soma-targeting

inhibition, resetting them to the level of novel environment exploration. Simultaneously, at lap

100, we induce dendritic activity within a region far from the peak of the neuron’s place field.

Since the modulation of inhibition is applied over the entire environment, there is an increase

in both within-field and out-of-field firing rate. Accordingly, the shift in place field location is

harder than in the case without manipulation of inhibition (Fig 5K). Next, we suppress den-

dritic inhibition only when the animal is inside of a section of the environment, not overlap-

ping with the neuron’s original place field, and without direct external stimulation onto the

CA1 pyramidal cell (S8E and S8F Fig). This spatially-confined dendritic disinhibition leads to

the shift place field location (S8E and S8F Fig). We conclude that, surprisingly, re-setting inhi-

bition to novel environment levels is not enough to make place fields plastic again. Indeed,

overall manipulation of inhibition reinforces stable place fields by increasing within-field

activity. Spatially-restricted dendritic disinhibition, however, can shift place field location.

In summary, our model suggests that single-cell place fields can be shifted under the induc-

tion of dendritic activity. Our model predicts that small induction areas are more effective at

inducing the development of new place fields. Induction in novel environments is also more

efficient than in familiar ones. Counter-intuitively, resetting novel environment level of inhibi-

tion represses place field plasticity.

Discussion

We propose a model of hippocampal CA1 place cells in which interneuron activity is modu-

lated by novelty in an interneuron-type-dependent manner. Using our simulations, we iden-

tify the potential mechanisms underlying the evolution of place fields and the transition from

silent to place cells in novel environments. During the initial stages of exploration of novel

environments, dendrite-targeting inhibition is reduced whereas soma-targeting inhibition is

case in which the application of an extra current is paired with the resetting of the novelty signal. The extra current is applied to the postsynaptic neuron

while the animal traverses a small section (15%) of the track. Yellow bar indicates the induction region in which the extra current is applied. Dashed line

indicates the position of the peak of the initial place field. Blue arrow indicates the first induction lap (lap 100). Red curve shows the evolution of the

novelty signal over laps. Re-setting the novelty signal leads to a reduction in dendritic inhibition across the whole track. Therefore, the in-field activity

increases, leading to the reinforcement of the initial place field.

https://doi.org/10.1371/journal.pcbi.1007955.g005
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increased. The reduction in dendritic inhibition opens a window for plasticity, leading to the

formation and stabilization of receptive fields. We then show that place fields are more stable

in familiar environments than in novel environments. Our simulations suggest that this extra

stability is due to stronger synaptic weights and increased dendritic inhibition. Our model

makes predictions on how to perturb place fields by dendritic activation. In our model, den-

dritic activation can shift place field location. We predict that this shift is easier if the dendritic

activity is induced only within a small region of the environment, in the order of the size of

presynaptic place field widths. We also predict that it is easier to induce place field shift in

novel than in familiar environments. Our model, albeit simple, provides a mechanism for sev-

eral features of the CA1 network and provides testable predictions.

The modulation of interneuron activity during exploration of novel environments is

thought to be important for place field development and stabilization. Dendritic events, such

as NMDA spikes and Ca2+ plateau potentials [11, 15, 29], have been implicated in the develop-

ment of new place fields. Thus, the reduction in dendritic inhibition—due to a reduction in

SST interneuron activity, for example—might be responsible for opening a window for plastic-

ity by promoting these dendritic events. Reduced inhibition could unmask small input inho-

mogeneities, leading to the rapid emergence of place cells during the first stages of exploration

of novel environments. These small inhomogeneities would then be amplified through synap-

tic plasticity. The role of increased somatic inhibition in novel environments, however, is less

clear. Since soma-targeting interneurons receive inputs from local pyramidal cells, the increase

in soma-targeting interneuron activity could be reflecting the increase in pyramidal cell activ-

ity. Somatic inhibition can also be responsible for regulating pyramidal cell activity to ensure

that the overall level of excitatory activity is kept within a certain regime. In our simulations,

we induced a quick switch between silent and place cells by injecting an excitatory current

onto the perisomatic section of the CA1 pyramidal cell. Endogenously, this change in somatic

input might be mediated by soma-targeting interneurons such as a subset of PV expressing

cells. These cells would then act as a gate and could quickly reassign which cells become active

and therefore choose which cells encode the relevant spatial information. Following this quick

assignment of place cells, further mechanisms such as back-propagating action potential or

increased dendritic inputs could consolidate the newly defined place map. This control by PV

interneurons might be important to ensure the development of sparse and robust representa-

tions. Overall, this dendrite- and soma-specific regulation could be a mechanism to separate

the learning process into two stages such that spatial representations are first developed within

the hippocampus before being communicated back to cortex. Furthermore, the increase in

soma-targeting interneuron activity can also be responsible for controlling plasticity at CA1

pyramidal neurons.

Our model provides several predictions that could be tested experimentally. In our simula-

tions, place fields can be formed even in the absence of a novelty signal (S1A Fig). However,

the dynamics of the evolution of place fields are altered in this scenario. For instance, the

amplitude of newly developed place fields does not progress towards a lower level with spatial

exploration (S1A Fig). Although controlling the novelty signal experimentally—by modulating

both SST and PV interneuron activity simultaneously—would be extremely challenging, this

prediction could be tested by analyzing place fields formed after several laps of exploration,

when the novelty signal would be much weaker and the interneuron activity would have

returned to its baseline level [11]. Furthermore, in our simulations, the quick and abrupt

switch from silent to place cell is a direct consequence of the nonlinear propagation of inputs

from dendrites to soma. This non-linearity has been shown to be mediated by a persistent

sodium current [59]. In the absence of this gating mechanism, place field amplitude would

vary across a wider range of amplitudes (S1B Fig). This could be tested by measuring place
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field amplitudes during the suppression of the persistent sodium current in single cells while

the animal explored an environment [59]. Finally, our model provides specific prediction on

the efficiency of perturbation protocols to shift place field location. Although place fields have

been manipulated experimentally by single cell stimulation [42], our model provides a frame-

work that can be used to designing further protocols.

The inclusion of the nonlinear dendrite-to-soma propagation in a more biologically

detailed version of our model should not affect the qualitative results presented here since

our model is agnostic to the specific mechanism underlying the non-linear dendrite-to-

soma propagation. Our model only assumes this propagation to be dependent on the base-

line somatic depolarization, in agreement with experiments [12, 59]. A possible extension of

our model could involve the implementation of other forms of nonlinearities. A smoother

non-linear dendrite-to-soma propagation would result in a smoother transition from silent

to place cell, which can also be observed in our model with the inclusion of noise on excit-

atory inputs (Fig 1).

For some of our simulations, we considered variations of our model using more complex

implementations such as a biophysical, spatially extended spiking neuron model, and a

recurrent network to take into account feedback inhibition. A further extension of our

model could include, for example, a combination of both. PV and SST interneurons have

been shown to have specific roles within the hippocampal CA1 network [60]. While both

PV and SST silencing increase pyramidal cell activity, SST silencing controls pyramidal cell

bursting activity whereas PV silencing controls the timing of pyramidal cell spiking within

the theta cycle [60]. Combining a biophysically detailed neuron model with recurrent con-

nection would allow us to explore these aspects of the CA1 hippocampal network and the

introduction of a novelty signal could unravel how these different roles emerge during explo-

ration of novel environments.

Aside from direct dendritic disinhibition, place cells might be formed by alternative—prob-

ably complementary—mechanisms such as via neuromodulation. Several neuromodulators

such as acetylcholine, noradrenaline, dopamine and serotonin, have been implicated in long-

term synaptic plasticity [61, 62, 63, 64, 65, 66]. These neuromodulators are responsible for

changing the functional state of the hippocampal CA1 network and they might be responsible

for modulating interneuron activity when the animal faces novel experiences [67, 68, 69]. The

action of neuromodulators, however, may have further implications such as an increase in

pyramidal cell excitability or change in the plasticity rules governing glutamatergic synapses.

The inclusion of these factors in future versions of our model could help to unravel further

details of the mechanisms associated with place field development.

In our simulations, we considered the development of place fields as a consequence of plas-

ticity at glutamatergic synapses mediated by disinhibition. Although inhibition evolved with

time in our model, inhibitory plasticity was not taken into account. Previous computational

models have shown that place fields can be developed through the interaction between excit-

atory and inhibitory plasticity [43]. In these models, only one type of interneuron was consid-

ered and place fields could be formed from homogeneously distributed place-tuned inputs

[43]. Therefore, our model complements previous models by introducing interneuron diver-

sity while assuming place-tuned inputs. More recently, synapses from SST and PV interneu-

rons onto CA1 pyramidal cells have been shown to follow interneuron-type-specific learning

rules [70]. A combination of these recent findings and the novelty signal described in our

model could lead to further insights and predictions regarding place field development and

stabilization. The novelty signal could be responsible for the global emergence of place fields

whereas the interaction between excitatory and inhibitory plasticity could be responsible for

their refinement.

PLOS COMPUTATIONAL BIOLOGY Somatic and dendritic inhibition promote the emergence and stabilization of place fields

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007955 July 10, 2020 15 / 28

https://doi.org/10.1371/journal.pcbi.1007955


Following synaptic plasticity, CA1 pyramidal cells might exhibit spatially-tuned activity in

our model. The place fields displayed by these neurons are the result of a combination of place

fields exhibited by upstream neurons. This combination is then processed by the CA1 neuron

in three stages: dendritic nonlinearities, dendrite-to-soma nonlinear propagation, and somatic

rectification. These nonlinearities form important processing steps and ultimately lead to

the formation of silent and place cells. To simplify our results and analysis, we impose single-

peaked, spatially-tuned activity on input neurons. CA1 pyramidal cells, however, are also sub-

ject to more complex inputs such as grid-like inputs from entorhinal cortex or from multi-

peaked CA3 place cells. The incorporation of these complex inputs in our model would likely

lead to more complex CA1 pyramidal cell place fields. In this case, both dendrites and soma

could exhibit multi-peaked place-tuned activity, as observed experimentally [71]. Future

extensions of our model could explore the effect of multi-peaked place-tuned inputs on place

field plasticity and remapping.

Across all of our simulations, we assumed that CA1 pyramidal cells received place-tuned

input while being agnostic to the source of this input. These neurons, however, receive inputs

from both the hippocampus and cortex, which target different sections of the CA1 pyramidal

neurons. Therefore, changes in the distribution of inhibitory inputs can alter the excitability

of proximal and distal section of CA1 neurons [11] and ultimately select the main drive of

CA1 pyramidal cell activity [70]. The incorporation of these different sources of inputs in our

model could lead to more complex place field dynamics. The inclusion of different input could

also improve the extrapolation of our model to other brain regions and provide predictions

regarding the selection of feedforward and feedback inputs in primary sensory areas [72, 73]

or principal cell activity following inhibitory reorganization in motor cortex [74].

In our model, we considered synaptic plasticity to be dependent on presynaptic activity and

postsynaptic dendritic activation only. Additionally, we considered only direct dendrite to

soma propagation. Although dendritic activation is necessary for NMDA-dependent synaptic

potentiation, this activation can indeed be induced by local NMDA spikes [35, 36, 37, 75, 76]

and plateau potentials [38, 39, 40], but also by back-propagating action potentials [7, 32, 33,

34]. Therefore, whereas somatic activation does not seem to be necessary for place field forma-

tion, it might also promote synaptic plasticity. It would be interesting to include soma-to-den-

drite propagation in future extensions of our model and investigate the consequences of

somatic activation to place field formation and stability.

CA1 pyramidal cell depolarization has been shown to increase rapidly following exposure

to novel environments [10, 14]. As suggested by Cohen et al. [10], this increase is associated

with increased excitatory inputs onto CA1 pyramidal cells in our model. Through exploration,

pyramidal cell firing rate returns to baseline levels in familiar environments. This later reduc-

tion in place cell firing rate has been suggested to be associated with a reduction in excitatory

input [10]. Conversely, inspired by data from Sheffield et al. [11], our model suggests that the

return to baseline firing rate might be associated with the combined increase in dendritic inhi-

bition and decrease in somatic inhibition, while excitatory inputs remain strong. This strong

dendritic inhibition and strong dendritic excitation might lead to a local balanced state, giving

rise to experimentally observed dynamics [77].

Our model indicates that the balance between strong excitatory input and the interplay

between dendritic and somatic inhibition leads to place field stabilization in familiar envi-

ronments. Synaptic plasticity, in our model, leads to the strengthening of within-field inputs

and weakening of out-of-field inputs. The importance of plasticity for place field stabilization

is corroborated by experiments in which NMDA receptors have been shown to be important

for place field stabilization [22, 27, 28]. The increase in dendritic inhibition in familiar envi-

ronments in our model induces a reduction in dendritic events and, thus, a reduction in
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plasticity-induced changes in place fields. Additionally, the combination of weak out-of-field

inputs and strong dendritic inhibition leads to higher robustness to noise. Overall, place

fields stabilize following the exploration of novel environments, in agreement with experi-

ments [10]. Besides changes in excitatory and inhibitory inputs, dendritic nonlinearities

might also contribute to place field development and stabilization. In the presence of noise,

our model indicates that dendritic nonlinearities are crucial for reliable place field develop-

ment. Therefore, our model offers a possible mechanism for place field stabilization and

highlights the importance of interneuron diversity and the balance between strong excitatory

and inhibitory inputs for this stabilization.

Our model provides a mechanistic understanding of the CA1 network. It reproduces a vari-

ety of observations, such as the dynamics of place fields during the exploration of novel and

familiar environments. Furthermore, we demonstrate that place fields can be manipulated by

artificial depolarization of CA1 pyramidal cells or by spatially-restricted dendritic disinhibition

in our model.

Methods

Neuron model

We use two-compartment, rate-based neuron models (except for simulations shown in S2

Fig). This model was derived from a reduction of a detailed two-comparment spiking neuron

model [57]. Each neuron is modeled as two compartments: one representing the perisomatic

region and another representing the apical dendrites. The dendritic compartment’s activity,

rdend, is determined by

t0

drdend
dt
¼ � rdend þ gdend pdendð Þ ;

where τ0 is a time constant, and pdend is the dendritic “potential” variable given by

pdend ¼
X

i

wiRi � Idend þ Iextdend ; ð2Þ

where Ri is the firing rate of neuron i in the presynaptic layer, wi is the synaptic weight from a

neuron in the presynaptic layer, Idend is the input from dendrite-targeting interneurons—sim-

ulating SST interneuron inputs, and Iextdend is an external current applied to the dendritic com-

partment. The function gdend is a non-linear function of the input to the dendritic

compartment given by

gdendðIÞ ¼ a1½ tanh ðI=I0Þ�þ þ a2

1

2
ð tanh ð2ðI � I0ÞÞ þ 1Þ

� �

;

where [�]+ denotes a rectification that sets negative values to zero, α1 controls the linear gain of

the dendritic compartment, α2 controls the amplitude of the non-linear term associated with

dendritic spikes, and I0 is proportional to the minimum input current necessary for the induc-

tion of a dendritic spike (S9A and S9B Fig).

Inspired by experimental evidence showing that the propagation of dendritic activity to

the soma can depend on somatic depolarization [12, 58], we implement a gating mechanism

in our model. Inputs from dendrites are propagated to the soma following a non-linear

propagation function that depends on the somatic “potential” Vsoma = Esoma − Isoma, where

Esoma ¼ Eint
soma þ Iextsoma is sum of the excitatory input onto the perisomatic compartment, Eint

soma,

and the external current applied to the soma, Iextsoma, and Isoma is the input from soma-targeting

interneurons—simulating PV interneuron inputs. The activity of the somatic compartment,
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rsoma, is given by

t0

drsoma

dt
¼ � rsoma þ ½gpropðVsomaÞrdend þ Esoma � Isoma � Nth�þ ;

where Nth is the threshold for somatic activation, and the non-linear dendrite-to-soma propa-

gation function gprop is given by

gpropðVsomaÞ ¼

0 if Vsoma � yprop

1 if Vsoma > yprop

;

8
<

:

where θprop is a threshold for dendrite-to-soma propagation. In our model, the activity (or

rate) of each compartment can be related to either its rate or a rectified version of its local volt-

age. The external current onto the somatic compartment, Iextsoma, is set to zero for all simulations

except for simulations on Fig 1 and S1 Fig, in which cases this current is set to a constant value

over one entire lap.

Synaptic plasticity model

Synaptic plasticity in hippocampal CA1 neurons has been shown to be dependent on the acti-

vation of presynaptic terminals and strong postsynaptic dendritic depolarization [7, 9, 15, 33,

37, 40]. In our simulations, synaptic weights from input neurons onto CA1 neurons are plastic

and depend on the activities of the presynaptic neuron, rj, and the dendritic compartment of

the postsynaptic neuron, rdend, as a standard Hebbian term. We include a homeostatic term

that takes into account the sum of all synaptic weights onto the postsynaptic neuron. The syn-

aptic weight from input neuron j to the postsynaptic neuron i, wij is updated following

dwij

dt
¼ Zexr

i
dendrj � Zhomeo

X

j

wij � yhomeo

 !

;

where ηex is the learning rate of excitatory connections, ηhomeo is the learning rate of the

homeostatic term, and θhomeo is a target homeostatic constant.

Position-modulated inputs

The simulated CA1 neurons receive feedforward input from Npre neurons. These input neu-

rons are tuned to specific locations and their firing rates span over the entire environment.

All the place fields of input neurons have the same tuning width, σpre, and the same amplitude,

Apre. We assume that the animal explores an annular track of length L with speed v. The firing

rate of an input neuron with place field centered at p0 is

rinputðpÞ ¼ Apre exp �
d2

2s2
pre

 !

; ð1Þ

where p is the animal’s position, and d is the distance, along the track, between the animal’s

position and the center of the place field.

Novelty signal

The activity of PV and SST interneurons has been shown to be modulated by novelty [9].

When an animal enters a novel environment, SST interneuron activity decreases whereas PV

activity increases [9]. Analogously, when simulating the exploration of a novel environment,
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we assume that interneuron activity changes over time in an interneuron-type specific man-

ner. We define a quantity, named novelty signal, that modulates the interneuron activity

nðtÞ ¼ exp ð� t=tnÞ ;

where t is the time measured from the start of exploration, and τn is a time constant. The den-

dritic and somatic inhibition are then given by

Idend=somaðtÞ ¼ I1dend=soma � ðI
1
dend=soma � I0

dend=somaÞnðtÞ ;

where I1dend=soma is the inhibitory input onto the dendrite/soma in familiar environments, and

I0

dend=soma is the initial inhibitory input onto the dendrite/soma in novel environments. The ini-

tial level of dendritic inhibition is assumed to be lower than its level in familiar environments,

I0

dend < I1dend. The initial level of somatic inhibition is assumed to be higher than its level in

familiar environments, I0

soma > I1soma.

Table 1. Parameters summary.

Neuron Model

Name Value Description

τ0 5.0 ms Firing rate time constant

α1 4/3 Linear gain of dendritic compartment

α2 2/3 Related to the amplitude of dendritic spikes

I0 2.5 Minimum current to induce dendritic spikes

Nth 1.0 Threshold for somatic activation

θprop - 0.2 Threshold for dendrite-to-soma propagation

Plasticity Model

Name Value Description

ηex 2 × 10−4 ms−1 Excitatory plasticity learning rate

ηhomeo 2 × 10−4 ms−1 Homeostatic plasticity learning rate

θhomeo 3.0 (Fig 5: 2.0) Homeostatic target value

Place-tuned input

Name Value Description

Apre 2.2 Presynaptic place field amplitude

σpre 5.0 Presynaptic place field width

Novelty signal

Name Value Description

τn 100 s Time constant for novelty signal decay

I0

dend 0.8 Initial dendritic inhibition

I1dend 7.5 (fig2); 8.5 (fig3 & 5) Target dendritic inhibition

I0

soma 1.2 Initial somatic inhibition

I1soma 0.0 Target somatic inhibition

Simulation parameters

Name Value Description

Npre 10 Number of presynaptic neurons

Eint
soma 0.0 (fig1); 0.5 (fig2); 1.0 (fig3 & 5) Excitatory current onto perisomatic compartment

Tlength 50 a.u. Track length (arbitrary units)

v 1 × 10−2 ms−1 Animal speed

dt 1 ms Integration time step

https://doi.org/10.1371/journal.pcbi.1007955.t001
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Measuring place field stability

In Fig 4, we analyze the stability of place fields in the first and last lap of novel environment

exploration. In order to measure the effect of noise in novel environments, we go through the

following steps: (1) we take the network in the state it was at the beginning of lap 1; (2) we sim-

ulate one lap of exploration, without plasticity; (3) we measure the place field of the postsynap-

tic neuron; (4) we rescale this place field such that its peak is set to 1; (5) we change the state of

the network by adding noise to it (see below); (6) we repeat (2)-(4); (7) we calculate the abso-

lute distance between the two rescaled receptive fields; (8) we repeat (6)-(7) Nnoise times and

take an average over all samples (S9 Fig). To measure the effect of noise in familiar environ-

ments, we follow the same steps but using the state of the network at the beginning of the last

lap (lap 100) in step (1).

We assume that place fields can be affected by three sources of noise: (i) noise at presynaptic

place fields, (ii) noise at presynaptic firing rates, and (iii) noise at synaptic weights. In case (i),

we multiply each presynaptic receptive field (Eq 1) by a random variable taken from a normal

distribution with mean 1 and variance N2. In case (ii), we assume that each presynaptic neuron

receives an extra input, independent of its receptive field, and not tuned to the animal’s posi-

tion. This extra input is taken from a normal distribution with mean 0 and variance N2 and

then rectified to admit only positive values. In case (iii), we add a random number to each syn-

aptic weight. This random number is taken from a normal distribution with mean 0 and vari-

ance N2. In all three cases, we define N as the noise amplitude.

Parameters and simulations

All simulations were implemented in python and will be made available at ModelDB. The

parameters used in our simulations can be found in Table 1.

Supporting information

S1 Fig. (related to Figs 1 and 3). Novelty signal and dendrite-to-soma propagation gating

are required to reproduce experimental data. (A) Mean somatic (solid like) and dendritic

(dashed line) activity as a function of the lap of exploration for a simulated CA1 pyramidal

cell in which both dendritic and somatic inhibition were kept constant (no novelty signal)

throughout the simulation. Mean activity increases within a few laps of exploration but does

not return to baseline levels in familiar environments. (B) Left: pyramidal cell somatic activity

as a function of the animal position for three different amplitudes of external injected current:

zero, 1.0 and 1.5. Right: Difference between peak and baseline somatic activity as a function

of the external somatic input. In these simulations, inputs from dendrites to the soma could

propagate freely, without any gating mechanism. The gating mechanism is therefore essential

for the abrupt transition from silent to place cell observed experimentally.

(PDF)

S2 Fig. (related to Fig 3). The interplay between somatic and dendritic inhibition balances

excitatory synaptic plasticity in a biophysical neuron model. (A) Simulated biophysical, spa-

tially extended neuron modelled as a ball-and-stick neuron. The neuron receives place-tuned

excitatory inputs and dendritic inhibition at the tip of a cylindrical compartment and somatic

inhibition directly to the spherical, somatic compartment. Excitatory inputs are plastic and fol-

low a Hebbian-type plasticity rule that depends on the amplitude of the excitatory input and

the timing of postsynaptic spikes. Dendritic and somatic inhibition evolve in time following

the novelty signal used in our rate-based simulations, i.e. dendritic inhibition increases over

time whereas somatic inhibition decays. See supplementary S1 Methods for more details.
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(B) Mean firing rate over laps of exploration for simulated CA1 neurons. The average was cal-

culated across 50 CA1 neurons and the shaded area represents the s.e.m. over all cells. Analo-

gously to the results observed with rate-based neurons, the firing rate increases quickly over

the first few laps and slowly returns to baseline level. (C) Firing rate as a function of the animal

position for lap 1 (left), lap 5 (middle), and lap 80 (right). Firing rates were calculated as an

average over 50 simulated CA1 cells under the same initial conditions. Place fields for laps 1

and 80 are similar whereas the place field at lap 5 is higher in amplitude. (D) Membrane volt-

age as a function of time across the first lap of exploration measured at the tip of the dendrite

(top) and at the soma (bottom). (E) Membrane voltage as a function of time across the 80th lap

of exploration measured at the tip of the dendrite (top) and at the soma (bottom).

(PDF)

S3 Fig. (related to Fig 3). Novelty signal at input neurons widens initial place fields with-

out disturbing their dynamics. (A) Network diagram. Similar to simulations shown in Fig 2

with the introduction of novelty signal at input neurons. Pyramidal neurons receive place-

tuned, excitatory input and inputs from two types of interneurons: dendrite-targeting (DT),

representing somatostatin-expressing interneurons, and soma-targeting (ST), representing

parvalbumin-expressing interneurons. The propagation of inputs from dendrites to soma

is gated by the somatic “potential” (see Methods). The CA1 pyramidal cell is modelled as

a two-compartment neuron model with a nonlinear dendritic unit and a perisomatic unit.

The activity of interneurons is modulated during the exploration of novel environments. DT

interneuron activity (top black curve) decreases, whereas ST interneuron activity (bottom

black curve) increases in novel environments. Both interneuron activities gradually return

to baseline levels with a timescale defined by the hypothesized novelty signal (red curve, see

Methods and main text for details). The input neurons receive an extra input representing

the effect of a novelty signal onto the input neurons. This extra current decays in time follow-

ing the same time course as the novelty signal applied to inhibitory neurons. Synaptic con-

nections from input neurons to CA1 pyramidal cells are updated following a Hebbian-type

learning rule dependent on presynaptic activity and postsynaptic dendritic activation. (B)

Evolution of mean dendritic (dashed line) and somatic (solid line) activity for one example

cell. Both somatic and dendritic mean activities increase slightly during the first lap of explo-

ration due to synaptic plasticity. (C) Evolution of dendritic activity for the same cell as in

(B). Inset: first 10 laps of exploration. (D) Dendritic activity as a function of the animal’s

position for three stages of the simulation: lap 1 (top, blue; blue dashed line in (C)), lap 5

(middle, purple; purple dashed line in (C)), and lap 100 (bottom, orange; orange dashed

line in (C)). (E) Evolution of somatic activity for the same cell as in (B). Inset: first 10 laps

of exploration. The peak somatic activity increases in the first few laps of exploration due to

synaptic plasticity even though the mean somatic activity does not necessarily increase. (F)

Somatic activity as a function of the animal’s position for three stages of the simulation: lap 1

(top, blue; blue dashed line in (E)), lap 5 (middle, purple; purple dashed line in (E)), and lap

100 (bottom, orange; orange dashed line in (E)).

(PDF)

S4 Fig. (related to Fig 3). Feedback inhibition suppresses final place field amplitude

while conserving place field evolution dynamics. (A) Network diagram. An extra connec-

tion from pyramidal cells to dendrite-targeting interneurons is introduced. the remaining

network, including connectivity, novelty signal, and plasticity rules are identical to the ones

implemented in Fig 2. The parameter wIE is the synaptic weight for the connection from the

pyramidal neuron to the dendrite-targeting interneuron (see supplementary S1 Methods).

(B) Evolution of dendritic activity for wIE = 0.5 (left), wIE = 2.0 (middle), and wIE = 5.0
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(right). (C) Evolution of somatic activity for wIE = 0.5 (left), wIE = 2.0 (middle), and wIE =

5.0 (right).

(PDF)

S5 Fig. (related to Fig 3). Behavioral-time-scale plasticity promotes competition amongst a

higher number of inputs while preserving place field dynamics. (A) Diagram learning win-

dow for behavioral-time-scale plasticity (BTSP). We implement a symmetric learning window

with time constant τ. The change in synaptic weights depends on the activity of input neurons

and the activity of the postsynaptic dendritic compartment (see supplementary S1 Methods).

(B) Evolution of synaptic weights for one example cell with τ = 1.5 s (left) and τ = 1.0 s (right).

Initial synaptic weights are chosen to slightly favor input neuron 4. Due to the long time win-

dow for plasticity, a higher number of input neurons compete to develop a postsynaptic place

field. (C) Top: evolution of dendritic activity over 100 laps of exploration (left) and for the first

10 laps of exploration (right) for the same example cell in B left (τ = 1.5 s). Bottom: evolution

of somatic activity over 100 laps of exploration (left) and for the first 10 laps of exploration

(right). (D) Top: evolution of dendritic activity over 100 laps of exploration (left) and for the

first 10 laps of exploration (right) for the same example cell in B right (τ = 1.0 s). Bottom: evo-

lution of somatic activity over 100 laps of exploration (left) and for the first 10 laps of explora-

tion (right).

(PDF)

S6 Fig. (related to Fig 4). Strong synaptic weights and stronger dendritic inhibition ensures

place field stability. (A-B) Strong synaptic weights provide stability to noise on synaptic con-

nections. (A) Left: Network diagram for the network state at the last lap of exploration in Fig 4.

Right: Modified network with reduced synaptic weights and reduced dendritic inhibition.

Importantly, the changes are determined such that the neuron’s place field is kept unchanged.

(B) Destabilization of place fields by noise on synaptic weights for final lap of exploration

(orange) and modified network as in (B) (black). (C) Left: Network diagram for the network

state at the last lap of exploration in Fig 4. Right: Modified network with reduced dendritic

inhibition and increased somatic inhibition. Importantly, the changes are determined such

that the neuron’s place field is kept unchanged. (D) Destabilization of place fields by noise on

presynaptic firing rates for final lap of exploration (orange) and modified network as in (C)

(black).

(PDF)

S7 Fig. Dendritic non-linearity leads to reliable place field development. (A) Single-cell dia-

gram. A pyramidal neuron receives input I and integrates it through a function gdend. (B) Den-

dritic transformation function gdend as a function of the input I for linear dendrite (left, red)

and nonlinear dendrites (right, green). (C) Spatial correlation between laps for blocks of 10

laps on simulations with nonlinear dendrites (green) and linear dendrites (red). Thick lines

show averages over 200 cells for each group. Thin lines are individual cells. Note that the spa-

tial correlation for several cells with linear dendrites does not increase over lap blocks. (D)

Examples of individual pyramidal cells with linear dendrites. Top, evolution of neuron firing

rate over laps as a function of the animal position. Middle, average neuron firing rate over the

last 10 laps of exploration as a function of the animal position. Spatial correlation between laps

for blocks of 10 laps. (E) Examples of individual pyramidal cells with nonlinear dendrites. Top,

evolution of neuron firing rate over laps as a function of the animal position. Middle, average

neuron firing rate over the last 10 laps of exploration as a function of the animal position. Spa-

tial correlation between laps for blocks of 10 laps.

(PDF)
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S8 Fig. (related to Fig 5). Artificially induced CA1 single cell activity can shift place field

location. (A-D) Evolution of place fields for the case in which an extra current is applied to the

postsynaptic neuron while the animal traverses a section of the track. Yellow bar indicates the

induction region in which the extra current is applied. Dashed line indicates the position of the

peak of the initial place field. Blue arrow indicates the first induction lap. Red curve shows the

evolution of the novelty signal over laps. (A) Place field evolution for 10 induction laps and

small induction region (15% of the track). Place fields are shifted towards new position deter-

mined by the region of extra current application. (B) Place field evolution for 2 induction

laps and small induction region (15% of the track). Place fields are transiently removed by the

application of extra current and reemerge at the initial location. (C) Place field evolution for 3

induction lap and small induction region (15% of the track). Place fields are removed following

the application of extra current. (D) Same as Fig 5I for a larger number of laps. Place field evo-

lution for 5 induction laps and large induction region (45% of the track). The induction proto-

col is applied on lap 5, while the novelty signal is still strong. Place fields are shifted to new

location. (E-F) Evolution of place fields for a simulation in which dendritic inhibition is sup-

pressed while the animal traverses a section of the track. The disinhibition is induced only after

the initial place field has been developed and the amplitude of the novelty signal is negligible.

Blue bar indicates the induction region in which dendritic inhibition is suppressed. Dashed

line indicates the position of the peak of the initial place field. Blue arrow indicates the first

induction lap. Red curve shows the evolution of the novelty signal over laps. (F) Place field

evolution for 5 induction laps. Place fields are removed following the suppression protocol.

(G) Place field evolution for 15 induction laps. Place fields are shifted towards new position.

(PDF)

S9 Fig. Dendritic non-linearity and stability analysis procedure. (A) Single-cell diagram.

A pyramidal neuron receives input I and integrates it through a function gdend. (B) Diagram

of gdend as a function of the input I (see Methods). α1 controls the linear gain of the dendritic

compartment; α2 controls the amplitude of the non-linear term related to dendritic spikes; and

I0 controls the minimum input to elicit dendritic spikes. (C) Place field stability analysis. For

each measurement of place field stability (see Methods) we perform the following steps: (i) we

simulate one lap of exploration, without plasticity; (ii) we measure the place field of the post-

synaptic neuron; (iii) we rescale this place field such that its peak is set to 1; (iv) we change the

state of the network by adding noise to it; (v-vi) we repeat (ii)-(iii); (vii) we calculate the abso-

lute distance between the two rescaled receptive fields.

(PDF)

S1 Methods. Description of all the methods implemented in the simulations used to gener-

ate the supplementary figures.

(PDF)

S1 Table. Table of parameter values used in the simulations described in the supplemen-

tary methods.

(PDF)
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