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Abstract
In rodent visual cortex, synaptic connections between orientation-selective neurons are un-

specific at the time of eye opening, and become to some degree functionally specific only

later during development. An explanation for this two-stage process was proposed in terms

of Hebbian plasticity based on visual experience that would eventually enhance connec-

tions between neurons with similar response features. For this to work, however, two condi-

tions must be satisfied: First, orientation selective neuronal responses must exist before

specific recurrent synaptic connections can be established. Second, Hebbian learning must

be compatible with the recurrent network dynamics contributing to orientation selectivity,

and the resulting specific connectivity must remain stable for unspecific background activity.

Previous studies have mainly focused on very simple models, where the receptive fields of

neurons were essentially determined by feedforward mechanisms, and where the recurrent

network was small, lacking the complex recurrent dynamics of large-scale networks of excit-

atory and inhibitory neurons. Here we studied the emergence of functionally specific con-

nectivity in large-scale recurrent networks with synaptic plasticity. Our results show that

balanced random networks, which already exhibit highly selective responses at eye open-

ing, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are in-

voked within and between excitatory and inhibitory populations. If these conditions are met,

the initial orientation selectivity guides the process of Hebbian learning and, as a result,

functionally specific and a surplus of bidirectional connections emerge. Our results thus

demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale

functional networks with realistic receptive fields, highlight the role of inhibition as a critical

element in this process, and paves the road for further computational studies of sensory

processing in neocortical network models equipped with synaptic plasticity.
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Author Summary

In primary visual cortex of mammals, neurons are selective to the orientation of contrast
edges. In some species, as cats and monkeys, neurons preferring similar orientations are
adjacent on the cortical surface, leading to smooth orientation maps. In rodents, in con-
trast, such spatial orientation maps do not exist, and neurons of different specificities are
mixed in a salt-and-pepper fashion. During development, however, a “functional”map of
orientation selectivity emerges, where connections between neurons of similar preferred
orientations are selectively enhanced. Here we show how such feature-specific connectivity
can arise in realistic neocortical networks of excitatory and inhibitory neurons. Our results
demonstrate how recurrent dynamics can work in cooperation with synaptic plasticity to
form networks where neurons preferring similar stimulus features connect more strongly
together. Such networks, in turn, are known to enhance the specificity of neuronal re-
sponses to a stimulus. Our study thus reveals how self-organizing connectivity in neuronal
networks enable them to achieve new or enhanced functions, and it underlines the essen-
tial role of recurrent inhibition and plasticity in this process.

Introduction
Although lacking an orderly map of orientation selectivity (OS) [1–3], an increased connectivi-
ty between neurons with similar preferred orientations (POs) has been reported in the visual
cortex of adult mice [4–7]. However, such specific connectivity is conspicuously lacking imme-
diately after eye opening [6], suggesting that it might be a result of experience-dependent plas-
ticity during development. Simulations have indeed corroborated that synaptic plasticity can
lead to the formation of functionally specific networks [6].

The insight into the neuronal mechanisms that can be derived from those numerical studies
is, however, still somewhat limited: First, the results were reported only for very small ensem-
bles of neurons that lacked the rich recurrent dynamics of realistic cortical networks. Second,
the receptive fields and OS properties were mainly driven by feedforward inputs, and the effect
of large recurrent network dynamics in shaping orientation selective responses of neurons was
not taken into consideration. It remains, therefore, unclear if feature-specific connectivity can
at all emerge in more realistic neuronal networks, and whether the recurrent dynamics possibly
compromises the stability of the learned weights.

Here we study this scenario in large-scale recurrent networks of excitatory and inhibitory
neurons. These networks are known for their rich and biologically realistic repertoire of the dy-
namics they can exhibit [8, 9]. As a result, it is not clear if the connectivity structure observed
experimentally in adult animals [6] can also be obtained in simulations under these more real-
istic conditions. Collective dynamics of a strongly recurrent network of excitatory and inhibito-
ry neurons may enhance, but could also impede Hebbian learning and self-organization [10,
11]. The dynamics of large plastic networks is difficult to characterize in general [10, 12–22],
and there is conflicting evidence whether functional subnetworks can emerge in them under bi-
ological conditions. It remains, therefore, unclear if functionally specific connectivity can de-
velop in such networks.

Even more challenging is the question whether specific connectivity can be obtained in bal-
anced networks of spiking neurons with realistic receptive fields. It has been recently demon-
strated that balanced random networks can show highly selective neuronal responses despite
receiving only weakly tuned inputs [23–25]. Here we report that both highly selective neuronal
responses and functionally specific connectivity emerge simultaneously in balanced random
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networks with synaptic plasticity of excitatory-excitatory and excitatory-inhibitory recurrent
connections. In addition, the resulting connection specificity is sensitive to the statistics of the
stimuli, and an over-representation of one particular orientation leads to an over-representa-
tion of functionally specific weights among those neurons that prefer this orientation. Interest-
ingly, the emerging functional subnetworks remain stable for spontaneously active (non-
stimulated) networks, and the activity of the network in absence of a visual stimulus does not
substantially change the learned weights.

Results
Our point of departure is a recurrent network of excitatory and inhibitory neurons, with sparse
random connectivity (Fig 1A). Both the connection probability and the synaptic weights are
taken to be independent of the orientation preference of pre- or post-synaptic neurons. We
now ask the question whether such a network with plastic recurrent synapses can, through vi-
sual experience, develop specific connectivity (Fig 1B), where neurons with similar preferred
orientations are more likely and/or more strongly connected than others. To simplify our sim-
ulations and analyses, we admit only changes in the strength of synapses here. Structural plas-
ticity is not considered here and, hence, the multiplicity of connections is fixed in the networks
considered (see Materials and Methods). Feedforward plasticity is also not considered, and we
assume a fixed weight for the feedforward connections in all our simulations (see Discussion).

Activity-dependent modification of network responses
In agreement with experiments in mice demonstrating that neurons show orientation selective
responses already at eye opening [6], neurons in our networks exhibit selective responses even
before synaptic plasticity is turned on in the network, and despite receiving only weakly tuned
inputs [6, 23–25]. This is demonstrated here with the example of network activity in response
to a stimulus orientation of 90° (Fig 1C).

We then studied the consequences of turning on synaptic plasticity in our networks. We im-
plemented a voltage-based spike-timing dependent plasticity (STDP) rule [26] for excitatory-
to-excitatory (E! E), excitatory-to-inhibitory (E! I), and inhibitory-to-excitatory (I! E)
connections, while keeping inhibitory-to-inhibitory (I! I) connections non-plastic (see Mate-
rials and Methods). This particular learning rule has been shown to faithfully reproduce a
broad range of experimental results on pair-based spike-timing-dependent plasticity, STDP
[27, 28], voltage-clamp experiments [29, 30]), frequency dependency [31], pair and triplet ex-
periments [32], and triplet and quadruplet experiments [33] (see [34] for details). We then
stimulated the plastic network with a random sequence of different orientations, reflecting
some visual experience of this circuit of total duration 80 seconds. The response of the network
at the beginning and at the end of the learning period are depicted in Fig 1D and 1E, respective-
ly. The raster plots and histograms of population activity show that plasticity-induced changes
cause sparser activity in the network in the excitatory population. Individual neurons are selec-
tive before and after learning, but after learning they respond with a lower number of spikes,
and to a reduced range of stimulus orientations. This is most evident when we freeze the final
weights after learning and stimulate the network with exactly the same input as before learning
(compare Fig 1C and 1F). The overall response of the network activity (as reflected by the “net-
work tuning curve”) is still selective, but fewer spikes are emitted, and a smaller set of neurons
is now active.
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Fig 1. Simulating the effect of synaptic plasticity in balanced random networks. (A) In random networks of excitatory (E; triangles) and inhibitory (I;
circles) neurons, synaptic connections are established disregarding the stimulus selectivities (preferred orientation) of pre- and post-synaptic neurons. (B) In
specific networks, synapses between neurons of similar preferred orientations are stronger, while dissimilar feature selectivity of pre- and post-synaptic
neurons imply weaker synapses between them. (C–F) Stimulus-induced response of a network before, during and after learning. The middle of each panel
shows the raster plot of two seconds of stimulation. Spikes of excitatory and inhibitory neurons are displayed in red and blue, respectively. Within each
population, neurons are sorted according to the preferred orientations of their weakly tuned inputs. Average firing rates of individual neurons during the period
of stimulation are shown in the histogram on the right. The average firing rate of each subpopulation is indicated to the right of it, in the corresponding color.
The lower panel depicts the time-resolved histograms of population activity for excitatory (red) and inhibitory (blue) neurons, respectively. Population spike
counts are extracted from bins of size 10 ms. The colored bar at the bottom of the main panel shows the sequence of stimulus orientations applied during the
simulation (color code is indicated between panels (D) and (E)). For the simulations before (C) and after (F) learning, the initial or final weights are frozen,
respectively, and network activity is simulated with static weights in response to a stimulus of orientation 90°. During learning, a network with plastic
synapses is stimulated with 40 batches of oriented bar stimuli. Each batch consists of a random sequence of 20 different stimulus orientations, each stimulus
lasting for 100 ms. Therefore, the “visual experience” lasts 20 × 20 × 0.1 s = 40 s in total. The responses to the first and the last batch are shown in (D) and
(E), respectively.

doi:10.1371/journal.pcbi.1004307.g001
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Individual tuning curves before and after experience-dependent
plasticity
Changes in neuronal responses as a result of learning can be further illustrated by individual
tuning curves (Fig 2). We obtained such tuning curves by stimulating the network before and
after learning (Fig 1C and 1F, respectively), for 8 different stimulus orientations. Tuning curves
were extracted from the average firing rates of neurons in response to each orientation. Shown
are a sample excitatory and a sample inhibitory neuron in Fig 2A and 2B, respectively, and the
average tuning curves of the respective subpopulations in Fig 2C and 2D, respectively. Such

Fig 2. Orientation selectivity before and after learning. (A) Tuning curves of a sample excitatory neuron from the network before and after learning. The
mean firing rate of a neuron for different stimulus orientations was extracted from simulations of network activity for two seconds, as explained for Fig 1C and
1F. This was repeated 10 times for each orientation, and the mean and standard deviation over trials of the firing rates are depicted by solid lines and
corresponding shadings, respectively. (B) Same as (A) for a sample inhibitory neuron. (C) All tuning curves of excitatory neurons, similar to the tuning curve
in (A), were aligned to the preferred orientation of the input, and the average tuning curves (over 180 bins) before and after learning were computed from
them. The solid line indicates the mean value in each bin, and the shading is ± one standard deviation. The orientation selectivity index indicated in the plot
(OSI, see Materials and Methods) was computed from the average tuning curves, respectively. (D) Same as (C) for the inhibitory population. (E) The OSI was
computed for each individual tuning curve, and its distribution for the entire excitatory population is shown for a network before (solid) and after (outlined)
learning. The average OSI in the network is indicated for each case. (F) Same as (E), for the inhibitory population.

doi:10.1371/journal.pcbi.1004307.g002
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average tuning curves are obtained from averaging over individual tuning curves each aligned
to its respective input preferred orientation.

Overall, tuning curves show a slight enhancement of selectivity, as quantified by the orienta-
tion selectivity index, OSI (see Materials and Methods). The excitatory population responds
with less firing rate, consistent with our observation above that plasticity leads to sparser and
more selective network responses in this case. Enhancement of orientation selectivity, for indi-
vidual cells, also shows up in the distribution of OSI of individual tuning curves before and
after learning (Fig 2D and 2E, for excitatory and inhibitory populations, respectively).

This enhancement of tuning in excitatory neurons is consistent with the results reported by
Ko et al. [6], who demonstrated a slight enhancement of OSI after eye opening (an increase
from 0.62 to 0.68, see supplementary Figure 2 therein). Another experimental study [35] has in
fact reported a larger (almost two-fold) enhancement of OSI (from� 0.4 to 0.8, see Figure 4B
therein) during development. Note, however, that a different measure of orientation selectivity
(i.e. (Rpref − Rorth)/(Rpref + Rorth), where Rpref and Rorth are firing rates at preferred and orthogo-
nal orientations, respectively) were employed in these two experimental studies, as opposed to
the “global”measure of orientation selectivity (1−circular variance, see Materials and Methods)
that we have used here [36, 37]. A very recent study [38] has in fact computed both measures
of orientation selectivity and found a significant enhancement of OSI for both measures.

Emergence of feature-specific connectivity through learning
The synaptic learning rule considered here allows for changes in the weights of connections.
Comparing the initial random connectivity matrix (Fig 3A) with the connectivity matrix after
learning reveals some interesting structure within its subpopulations (Fig 3B). This pattern be-
comes more salient when the accumulated changes of weights are plotted directly (Fig 3C).
One observes an unspecific potentiation (increase in amplitude) of E! I and (I! E) connec-
tions (column numbers and row numbers 401 to 500, respectively). This explains the observed
sparser responses in the network as the result of a more intense recruitment of inhibitory
neurons.

More noteworthy, however, is the increase in some E! E connections (diagonal band in
the matrix (B) and (C)). As neuron indices are sorted according to the preferred orientation of
the input to neurons, an increase around the main diagonal indicates a potentiation of connec-
tions between neurons with similar preferred orientations. The obvious symmetry of the E!
E block implies an over-representation of bidirectional connectivity between these neurons, as
was also shown experimentally [6]. This can be quantified by a normalized measure of weight-
ed bidirectional connectivity (WBInorm, see Materials and Methods), which has been increased
here from 1 (bidirectional connections expected from a random distribution of weights) before
plasticity to 1.38 (38% over-representation of bidirectional weights compared to random distri-
bution) after plasticity. As was noted in a previous small network model [6, 26], with an archi-
tecture that was mainly driven by feedforward links, this increase in bidirectional connectivity
is a consequence of the employed plasticity rule and would also hold for other, similar nonline-
ar rules [39–42]. Symmetric pair-based STDP models [14, 43], however, would not support bi-
directional connectivity.

Fig 3D–3E show the distribution of synaptic weights after learning, in relation to the differ-
ence in preferred orientation of pre- and post-synaptic neurons (dPO). The clear tuning of
weights for E! E connections (Fig 3D) demonstrates the emergence of specific connections
(black) in the network from initial random connections (red). In the case of E! I (Fig 3E) and
I! E connections (Fig 3F) the specific enhancement of weights is generally much weaker, re-
flecting the aforementioned essentially unspecific potentiation of all connections. The reason
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for this is the weaker tuning of neuronal responses in the inhibitory population (Fig 2A–2D),
as was also observed experimentally [4, 44, 45]. In our simulations, this is in turn a result of a
weaker tuning of feedforward input to inhibitory neurons (see Materials and Methods).

The sharp tuning of E! E weights as a function of the difference between preferred orien-
tations (dPO) of the pre- and post-synaptic neurons leads to an over-emphasis of connections
between neurons with similar preferred orientations. If pre-post pairs are split according to the
difference of their preferred orientations to similar (dPO< 30°), indifferent (30°< dPO< 60°)
and dissimilar groups (60°< dPO< 90°), a clear trend is now observed (Fig 3G). In contrast to
random networks with a flat profile of average connectivity (before learning, red), after the

Fig 3. Emergence of specific connectivity as a result of synaptic plasticity. (A) Initial connectivity matrix of the random network. Each excitatory neuron
is connected to a random sample of 30% of all post-synaptic neurons, with a weight EPSP = 0.5 mV. Inhibitory neurons form synapses of weight IPSP = −4
mV. Neurons are sorted according to their preferred orientations (POs) within each population (1–400: excitatory, 401–500: inhibitory). (B)Matrix of synaptic
weights in the network, after learning. (C) Change in the weights as a result of plasticity and “sensory experience”. The overall weight increase on the
diagonal shows the specific potentiation of synapses between pairs of excitatory neurons with similar POs. (D–F) The final weights (black) are plotted against
the difference in the preferred orientations (dPO) of pre-synaptic and post-synaptic neurons, for E! E(D), E! I (E) and I! E (F) connections, respectively.
The initial weights are shown in red, for comparison. (G)Mean of the weight distributions are shown for all synapses between neurons with similar
(dPO < 30°), indifferent (30° < dPO < 60°) and dissimilar POs (dPO > 60°). The unspecific distribution of initial weights (red) has now changed to an over-
emphasis of connections between neurons with similar POs, indicating the emergence of specific connectivity in the network through synaptic plasticity and
visual experience.

doi:10.1371/journal.pcbi.1004307.g003
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plastic period in the balanced network pairs of excitatory neurons with similar POs increase,
and pairs with dissimilar POs decrease the strength of a synapse between them (after learning,
black), fully consistent with experiments [5, 6].

In the results presented above, we considered networks with a connection probability of
30% for both E! E and E! I connections. An even higher connection probability for E! I
has in fact been reported in an experimental study [4]. We therefore studied how such a differ-
ence in connectivity affects our results. We found that all our main results, including emer-
gence of feature-specific connectivity and sparse orientation selective responses after learning,
also hold for the alternative connectivity parameters (S1 Fig). Our results are therefore also
consistent with a more experimentally constrained network connectivity. Note, however, that
matching the parameters of our model networks to real cortical networks might not be
straightforward, as relatively small networks of 500 neurons were considered to speed up the
simulations, and the exact scaling of the connectivity parameters for larger networks might be
different. Our conclusions, however, hold for a range of connectivity parameters as long as the
network is inhibition-dominated and operates in a balanced activity regime.

Balanced activity regime before and after learning
The balanced change of synaptic weights ensures that balanced regime of activity is maintained
in the network also after learning (Fig 4). In either case, a large excitatory input to the neurons
is counter-balanced by recurrent inhibition of comparable strength, which keeps individual
neurons away from saturation, and prevents runaway activity to occur in the network. This is
demonstrated for a sample neuron in response to its preferred orientation before and after
learning (Fig 4A and 4D, respectively). A 500 ms trace of the actual membrane potential of the
neuron is shown, along with the excitatory and inhibitory components of its (spike free) mem-
brane potential.

As a result of balanced input to the neuron, its membrane potential remains on average
below threshold, and spikes are generated by positive-going fluctuations. The tuning curve of
the average membrane potential of a sample neuron before and after learning (Fig 4B and 4E,
respectively), as well as the average (over network) tuning curves of the membrane potential of
all neurons in the network also reveal the same behavior (Fig 4C and 4F). Both networks, be-
fore and after learning, operate in the balanced activity regime. The only difference is that the
network after learning shows more hyper-polarized membrane potentials (Fig 4F). This is ex-
plained by the potentiated inhibition shown in Fig 4D, as compared to the network before
learning. This is also fully consistent with sparser and more selective responses of networks
after activity-dependent plasticity.

Orientation selectivity that emerges in balanced networks is very pronounced, even if the se-
lectivity of the feedforward input is extremely weak. This is because the untuned component of
the input is strongly suppressed by balanced networks [23], as a result of selective attenuation
of the common-mode due to dominant recurrent inhibition, while the same mechanism does
not affect the tuned component [25]. This processing is fully contrast-invariant: If the tuned
component of the input remains the same while only the untuned component increases (lead-
ing to a decrease of the relative modulation depth of the input), balanced networks still main-
tain their output selectivity.

This is exactly the scenario when the typical connectivity in the network, C = �N (corre-
sponding to the average number of connections each neuron receives in the network, see Mate-
rials and Methods), increases. In this case, the untuned component scales with C, while the

modulation scales with
ffiffiffiffi
C
p

. As a consequence, the relative modulation amplitude of the input

tuning (denoted by μ in our model, see Materials and Methods), also scales with 1=
ffiffiffiffi
C
p

[23].
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We therefore investigated the response of our networks for different input selectivities in this
manner, to see if our networks invariantly respond to more weakly tuned inputs.

To study this situation, we decreased the relative modulation of input to excitatory neurons,
μexc, in our networks, while scaling the strength of input such that the absolute modulation am-
plitude in the input remained the same (Fig 5). The tuning curves of a sample cell are, in fact,
almost the same before and after learning (Fig 5A and 5B). Output selectivity is maintained de-
spite a two-fold decrease in input selectivity.

This effect can be better seen, on the level of the entire population, by plotting the average
tuning curve of neurons in the network (Fig 5C and 5D), and the distribution of OSI of individ-
ual tuning curves (Fig 5E and 5F). Robust output selectivity is again observed for both net-
works, before and after learning. However, although there are some subtle differences among
different tuning curves before learning, the network after learning shows completely identical
responses to different inputs. Plasticity of excitatory and inhibitory weights, therefore, also ex-
tends the invariance of balanced network responses to more weakly tuned inputs.

Dynamics and stability of learning in the network
Next we looked at the dynamics of plasticity in our networks (Fig 6). Following the time evolu-
tion of the synaptic weights (averaged over synapses and average per batch) indicates that the

Fig 4. Balanced activity regime before and after learning. (A) The membrane potential trace of the same excitatory neuron shown in Fig 2A in response to
its preferred orientation is depicted here for 500 ms. The black trace is its actual membrane potential, with the thin vertical lines denoting spikes when the
membrane potential crosses the spiking threshold (the dashed line). The red and the blue traces reflect the excitatory and inhibitory components of the free
membrane potential (by not allowing the neuron to spike), respectively. (B) Temporal average of the membrane potential, hui, over two seconds of
stimulation is extracted for each stimulus orientation and plotted as a tuning curve. The tuning curve of the free membrane potential, ufree, is also computed,
by correcting for the total reset voltage induced as a result of spiking, i.e. ufree = u + τm uth r, where r is the mean firing rate of the neuron. (C) The tuning
curves introduced in (B) for a single cell are now computed for the whole network, by aligning the individual tuning curves and computing the mean and
standard deviation of values in each 180 discrete bins (similar to Fig 2C). (D–F) Same as (A–C), respectively, for the network after learning.

doi:10.1371/journal.pcbi.1004307.g004
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connection weights converge smoothly to their equilibrium values during the period of evoked
activity of the network (Fig 6A). Importantly, the learned weights remains stable during spon-
taneous activity: We continued the stimulation with an input that lacks feedforward tuning
and has a weaker baseline intensity (reflecting the fact that in the spontaneous state the feedfor-
ward input and hence the untuned input induced by it would be weaker). The results showed
that the weights learned in the stimulus-induced state now remain stable during untuned
input, when the network exhibits only sparse spontaneous activity (Fig 6A). We can therefore
conclude that the learned weights generally remain stable even when the corresponding visual
stimuli are not present, and govern the evoked responses in future stimulations. Note that this
phenomenon could not have been studied in the small network model mentioned before [6], as

Fig 5. Orientation selectivity of network responses to more weakly tuned inputs. (A) Simulations of the network in Fig 2 (before learning) are repeated
with the following changes in the parameters: sb (see Eq 2 in Materials and Methods) is scaled by a connectivity factor (C = 1, 2, 4), which emulates an
effective increase in connectivity. The relative modulation of the feedforward input to excitatory neurons, μexc (Eq 2), is reduced by a factor 1=

ffiffiffiffi
C
p

. Finally, to
keep the absolute size of modulation the same, feedforward synaptic strength is scaled by a factor 1=

ffiffiffiffi
C
p

. The output tuning curve of the sample neuron in Fig
2A for the three different values of C is then plotted. (B) Same as (A) for the network after learning. (C) Average tuning curves of all the cells in the network
(extracted similarly to Fig 2C) are plotted for different values of C, along with the OSI computed for each average tuning curve. (D) Same as (C) for the
network after learning. (E, F)Distribution of OSI of individual tuning curves (similar to Fig 2E and 2F) for the networks before and after learning, respectively.

doi:10.1371/journal.pcbi.1004307.g005
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is the networks studied there were mainly driven by feedforward, stimulus-induced input, and
were lacking the realistic recurrent dynamics of large-scale networks we study here.

The convergence of synaptic weights we observed in Fig 6A was for the average weights
over synapses. To obtain more insight on the evolution of synaptic weights on the systems
level, it is important to also look at the distribution of weights, rather than only on their mean
values (Fig 6B and 6C). The distribution of weights before and after learning in the evoked
state (first column) and during spontaneous activity (second column) is plotted for E! E, E
! I and I! E connections, respectively (Fig 6B). A more complete account of the evolution of
weight distributions can be obtained by inspecting the changes in weights after each batch of
learning (Fig 6C). Both analyses corroborate the previous results on the convergence of the
mean weights, and the stability of weights under spontaneous activity.

However, in the case of E! E weights, as opposed to other connections, a bimodal weight
distribution emerges out of the initial distribution of weights. This is due to the fact that the

Fig 6. Dynamics and stability of learned weights. (A) Evolution of synaptic weights in the network during plasticity. After each batch of learning, weights
are frozen and compared to the weights in the previous batch. The difference in the weights is averaged over populations, for all synapses, respectively. On
average, weight changes decrease over batches, indicating the convergence of the learning process. The weights established under evoked activity are also
stable for spontaneous activity, in absence of any specific stimulation (batch 41 and later, after the vertical dashed line). Here, the plasticity period is
continued for extra 10 batches, where neurons are only receiving an untuned background input (with an input rate of sb/2 and μ = 0, see Materials and
Methods). (B) Distribution of weights are shown separately for E! E, E! I and I! E weights, for evoked and spontaneous states, respectively. In each
case, two distributions are shown, one sampling the beginning and one sampling the end of the corresponding learning phase. (C) Distribution of weights
extracted at the end of each trial batch (every 2 s) is plotted for all plastic connections in a pseudo-color map. Note the logarithmic scale of the color code.

doi:10.1371/journal.pcbi.1004307.g006
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learning rule considered here is hyper-competitive. Therefore the weights are typically pushed
either to very high or to very low values. Similar bimodal distributions have previously been re-
ported in several other studies [14, 46, 47]. We did not observe such a bimodal distribution
when we chose the initial (non-zero) excitatory weights from a normal distribution about Jexc
(S2 Fig) (for a similar observation, see [14]).

In both cases (Fig 6 and S2 Fig), however, imposing hard bounds on E! E weights seems
necessary: in Fig 6C, the emergent bimodal distribution is not stable and smaller and larger
weights are still changing (decreasing and increasing, respectively). As a result, if learning is
continued for a longer time, smaller weights converge to zero and larger weights converge to
the maximum weight imposed on the connections. Such a bimodal distribution at wmin and
wmax is already visible in S2 Fig.

To further study the issue of dynamics of learning in our networks, we can also investigate
whether the network is sensitive to the statistics of stimulation (Fig 7). To test that, we pre-
sented cardinal orientations more frequently to the network such that half of stimuli corre-
sponded to either 0° or 90°. We observed that, as a result, the subnetworks corresponding to
these orientations became over-represented in the network, as reflected by its connectivity ma-
trix (Fig 7A). Although neurons with similar preferred orientations were still connected more
strongly, the enhancement of connectivity is more pronounced for subnetworks preferring
over-represented orientations, here corresponding to the cardinal orientations (Fig 7B). Thus,
the Hebbian learning leads to the emergence of feature-specific connectivity, while it remains
sensitive to the statistics of stimulation.

Fig 7. Stimulus statistics is reflected in the learned weights. (A) Sensitivity of the final weights to an over-representation of certain stimulus orientations.
When the stimulation is repeated with cardinal orientations being more frequent than others (0° and 90° stimuli represent 50% of all stimuli), the final weights
also reflect this over-representation of the corresponding subnetworks. (B) Total weight change of each presynaptic neuron is plotted vs. its initial preferred
orientation (PO). Specifically for the excitatory population, neurons with POs close to 0° and 90° show the highest increase in their synaptic weights.

doi:10.1371/journal.pcbi.1004307.g007
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Joint emergence of feature selectivity and selective connectivity
Our results so far revealed a critical role of inhibition for the initial establishment of orientation
selectivity and the ensuing emergence of feature-specific connectivity. The former was gov-
erned by the network dynamics alone, and specifically was a result of inhibition-dominance in
our networks. For the latter plasticity of certain recurrent synaptic connections was needed.
Next we asked the question what would happen if the initial selectivity was not as strong as we
had assumed so far in our simulations underlying Figs 1–7.

To answer this question, we first decreased the dominance of inhibition by a factor of 2
(from g = 8 to g = 4). This lead to a network that was not any more dominated by inhibition,
rather excitation and inhibition were of equal strength. Under these conditions, the output se-
lectivity of the network response was not as strong as before (Fig 8A), and the response was
generally less sparse. During learning, however, the responses became gradually sparser and
highly selective (Fig 8B and 8C), and eventually a degree of selectivity was obtained comparable
to the case g = 8 considered before (Fig 8D). As a result of synaptic learning in the network, in-
hibition became more dominant, which ensured highly selective output responses. Notably,
feature-specific connectivity was found to result from this procedure at the same time (Fig 8E–
8K). Thus, enhancement of feature selectivity and emergence of feature-specific connectivity
jointly result from plasticity in randomly connected recurrent networks, even if they are not, or
only weakly dominated by inhibition.

To study how feature-specific connectivity is related to initial orientation selectivity in our
networks, we systematically changed the inhibition dominance ratio, g, and measured the selec-
tivity of E! E weights after learning in each network (Fig 9). The more dominant inhibition
was in the beginning, the more selective were the initial network tuning curves (Fig 9A). In all
networks, some degree of feature-specific connectivity emerged after learning (Fig 9B). Howev-
er, the post-learning connections were more specific in networks with initially more selective
responses, as revealed by quantifying the selectivity of initial network responses and specificity
of final network connections after a similar period of learning (Fig 9C).

Robustness of the results
The above result shows that the emergence of feature-specific connectivity is robust with re-
gard to the most important parameter of network dynamics, namely inhibition-dominance.
We have shown before that the emergence of orientation selectivity is in turn robust to other
parameters of network connectivity (specifically, spatial extent of excitation and inhibition in
locally connected networks) [48], network dynamics (specifically, operating in asynchronous
vs. synchronous or mean-driven vs. fluctuation-driven regimes of activity) and single cell prop-
erties (specifically, linear or non-linear neuronal transfer functions) [49]. We will therefore
only focus on the parameters of plasticity for the remainder of the paper and test whether our
results are also robust to changes in these parameters.

To do this, we changed (either decreased or increased) the major parameters of plasticity in
our networks (see Materials and Methods) by 10% of their respective values, and ran the simu-
lations again (Fig 10). In all cases, feature-specific connectivity still emerges in the network, as
illustrated by the tuning curve of connection weights as a function of the difference between
preferred orientations of pre- and post-synaptic neurons, dPO (Fig 10A). This is further quan-
tified by computing a selectivity index of this tuning curve, which reveals similar values as for
simulations with the default values for all plasticity parameters (Fig 10B). We conclude that the
emergence of feature-specific connectivity is a robust property of our networks, as it is essen-
tially invariant to wide changes in network parameters.
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Fig 8. Emergence of feature selectivity and feature-specific connectivity. The format of (A–D) is identical to Fig 2, (C–F), and (E–K) identical to Fig 3,
respectively, for a network with initial random connectivity and strongly reduced inhibition dominance, g. Instead of g = 8, the inhibition-dominance ratio is
now decreased to g = 4 for the network “before plasticity”. As before, the learning was run for 20 batches.

doi:10.1371/journal.pcbi.1004307.g008
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We also checked specifically whether our results depend on the learning rates of excitatory
and inhibitory weights, and found that these are again not crucial for our results (S3 and S4
Figs). We increased the strength of synaptic potentiation (ALTP; see Materials and Methods) by
20% for either excitatory (S3 Fig) or inhibitory (S4 Fig) synapses, while keeping ALTP fixed for
the other type of synapses. This lead to similar results, and we found that the emergence of fea-
ture-specific connectivity in our networks is not compromised by different learning rates. The
only difference was a slightly increased or decreased feature-specificity of connections when

Fig 9. Relation between orientation selectivity and feature-specific connectivity induced by learning. (A) Initial (before learning) response selectivity
for networks with different amounts of inhibition dominance, g. (B) Each network is simulated for 20 batches of learning, and the final selectivity of E! E
weights is illustrated by plotting the weights vs. the difference in the PO of pre- and post-synaptic neurons (pre-post dPO). (C) The selectivity of the initial
network tuning curve (A) and the final weight tuning (B) is quantified by computing their OSI (see Materials and Methods) for each value of g. The more
selective the initial orientation selectivity is, the more feature-specificity is observed in the final connectivity.

doi:10.1371/journal.pcbi.1004307.g009

Fig 10. Robustness of the results to changes in the plasticity parameters. (A, B) The robustness of the results in the default configuration of the network
is studied by decreasing (A) or increasing (B) 5 parameters of plasticity by 10%. The parameters are ALTD, ALTP, θ−, θ+ and u2

ref , respectively. The learning
phase for each network is again organized in 20 batches. (C) Selectivity of the final weights is quantified (blue and red; similar to Fig 9) and compared with the
selectivity in the default case (black).

doi:10.1371/journal.pcbi.1004307.g010
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the learning rate was larger for excitatory and inhibitory synapses, respectively (S3 and S4 Figs,
respectively).

Finally, our results were also robust with respect to the learning rule governing I! E con-
nections. Although for simplicity, we have assumed the same plasticity rule governing all the
plastic synapses (i.e. E! E, E! I and I! E), employing another plasticity rule for I! E con-
nections [50] did not compromise our results (S5 Fig). We implemented this rule in S5 Fig, in-
stead of our voltage-based rule before, and choose the parameters such that inhibitory
plasticity ensures an average firing rate of 5 Hz in the excitatory population. Moreover, we
used the denser connectivity of E! I connections corresponding to experimental data [4], in-
stead of the default parameter. Note that given our parameters before, the connection frequen-
cy is now fully constrained by the experimental data (E! E and E! I connections according
to [4] and I! E and I! I connections according to [51, 52]). To be more realistic, we also
draw E! E connections from a normal distribution, similar to S2 Fig.

Similar results as before were also obtained in this case (S5 Fig). Initial orientation selective
responses became sparser as a result of learning (S5A–S5D Fig), and feature-specific connectiv-
ity emerged in E! E connections (S5E–S5K Fig). Synaptic weights showed stable and conver-
gent evolution under evoked state as well as spontaneous activity (S5L Fig), while change in the
statistics of stimulus presentation was reflected in the statistics of feature-specific connectivity
(S5M Fig). Note that neurons with similar preferred orientations are connected together with
the strongest weights (S5H Fig), consistent with a recent experimental report [53]. This, how-
ever, does not render the network fragmenting into disconnected parts, as neurons with similar
preferred orientations are connected together in a continuous manner. Thus, we can conclude
that our main results hold in realistic balanced networks fully constrained with experimentally
reported connectivity, and that they are robust to the main parameters of network dynamics
and plasticity, including the I! E plasticity rule.

Discussion
We analyzed biologically realistic models of sensory cortical networks, which are strongly driv-
en by recurrent activity, and the recurrent connections of which undergo synaptic plasticity.
We showed that functionally specific and stable connections can arise from an initially random
structure. Specifically, we could demonstrate that Hebbian synaptic plasticity in balanced ran-
dom networks can lead to the emergence of specific and bidirectional connectivity in orienta-
tion-selective networks. The initial response selectivity generated by such random networks
guides the Hebbian learning process to enhance the connectivity between neurons with similar
evoked responses.

If the initial selectivity is absent, or if it is very weak, specific connections, do not emerge, or
remain very weak (Fig 9). Therefore, if the recurrent coupling is weak, or if the network is not
inhibition-dominated, significant specific connectivity does not emerge. This is an immediate
consequence of too weak initial tuning of output tuning curves. This sequence of events in the
emergence of orientation selectivity and specific connectivity during learning is indeed fully
consistent with the developmental processes, where neurons first show orientation selective re-
sponses, and only later functional subnetworks emerge [6].

The plastic mechanisms in our networks would also lead to the joint emergence of feature-
specific neuronal responses and feature-specific synaptic connectivity, if the initial feature
specificity was weak. Concretely, if not enough inhibition was provided at the beginning to en-
sure sharp and sparse output responses, a potentiation of inhibition in our networks lead to an
enhancement of neuronal response selectivity during development. This was indeed accompa-
nied by the simultaneous emergence of feature-specific synaptic connectivity in the network,
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demonstrating that self-regulation in a randomly connected balanced network via synaptic
plasticity is capable of adjusting the network to work in the “right” regime, dominated by
inhibition.

In fact, in absence of such a dynamic self-regulation, plasticity of excitatory connections can
lead to a network, where only neurons with very similar orientation selectivity are connected
together. A similar issue was recently raised by [3], where it is argued that Hebbian plasticity,
naively applied, would drive networks to become overly specific, with only very few excitatory
connections between neurons preferring different orientations. First, this scenario is inconsis-
tent with the experimental results which show a heterogeneous functional connectivity in
mouse visual cortex [54]. Second, an overrepresentation of connections between functionally
similar neurons can lead to an instability of network dynamics, with pathological states of high-
ly correlated activity (unpublished observation). None of these phenomena were observed in
the simulations we report here, demonstrating that in plastic balanced networks self-regulatory
mechanisms emerge that work against such consequences.

We found that the emergence of functionally specific connectivity was a robust process that
always converged to a stable equilibrium in our simulations. However, the network was sensi-
tive to the stimulus statistics, and an overrepresentation of specific stimulus orientations even-
tually increased the number of neurons that selectively responded to that orientation.
Moreover, the synaptic weights in the equilibrium state after learning remained stable for a
spontaneously active network, in absence of visual stimulation.

Our results suggested that synaptic plasticity can enhance orientation selectivity. Consistent
with experimental studies [6, 35, 38], we observed an enhancement of orientation selectivity in
tuning after learning, as indicated by the OSI of tuning curves. The overall responses of our
networks became sparser, with fewer neurons in the network responding to each stimulus ori-
entation. This is consistent with experimental results demonstrating a sparsification of neuro-
nal activity in visual cortex after eye opening [55], and a general decrease in cortical activity
between eye opening (postnatal day 13) and the peak of the critical period for rodent visual cor-
tical plasticity (postnatal day 28) [56]. Also, consistent with our findings on the role of inhibi-
tion and stimulus statistics in refining both connectivity and function during development, a
recent experimental study has found an enhancement of surround-suppression during normal
vision for natural surround stimuli [57].

The importance of inhibition-dominance and inhibitory plasticity for our results brings up
a question with regard to recent experimental studies, which argue that lateral inhibition is not
a prerequisite for the emergence of orientation selectivity and its sharpening, and that the non-
linearity induced by the spiking threshold is enough [58–61]. First, in our networks, too, a non-
linearity induced by the spiking threshold was necessary for sharpening of tuning curves, as we
have analyzed and discussed in a recent study [49]. In fact, if such a nonlinearity in the transfer
function of single neurons was absent, no sharpening would appear, as a linear operation of the
neuronal network would linearly transform the feedforward tuning to output tuning curves
and map input cosine curves to output cosine curves [25, 49]. This nonlinearity, however, is
not acting alone in our networks, as the interplay between recurrent (excitatory and inhibitory)
inputs from the network and the nonlinearities of single cell transfer functions eventually de-
termines the output orientation selectivity and its sharpening.

This notion is supported by recent experimental results in mouse visual cortex [62, 63],
where broad inhibitory input underlies a developmental [63] and a contrast-dependent [62]
sharpening of tuning curves. These results, along with recent optogenetic experiments on the
contribution of inhibitory neurons to orientation selectivity [64, 65], provide direct evidence
for the functional role of inhibition in this process. However, we cannot rule out the possibility
of species-specific differences regarding the contribution of intracortical inhibition, especially
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between species with and without orientation maps (e.g. cats and macaque monkeys vs. mice
and rats) [1, 66–68], although clear evidence for the contribution of untuned inhibition to ori-
entation selectivity has also been provided for the former species [69, 70]. Further experimental
studies are thus needed to resolve this issue, and to elucidate the relative importance of each
mechanism.

The voltage triplet plasticity rule we used here was a non-linear variant with a symmetric
component. It was constructed to account for experiments [31], which show that if both neu-
rons fire at high rate (about 15 Hz), pre-before-post and post-before-pre both lead to LTP. In
that case, two neurons with the same orientation preference tend to fire together at high rate,
and therefore are bound to develop a bidirectional connection. An asymmetrical STDP rule, in
contrast, would tend to remove bidirectional connections (see also [14]). Hence, the learning
rule we used here is well suited to generate the connectivity pattern recently observed experi-
mentally in visual cortex [5, 6, 71].

The form of the plasticity rule from E! E, E! I, and I! E in our work was assumed to
be identical for the sake of simplicity. There are some recent data on inhibitory plasticity (e.g.
[72, 73], see also [74] for a review), but the experimental evidence is rather confusing. The
exact rule seems to be highly dependent on the protocol, the inhibitory neuron subtype, and
the experimental preparation. Therefore, we chose the simplest possible approach and used the
same rule for our main results. Specifically, our I! E plasticity rule was different from the
plasticity rule employed in a previous study [50], which set out to reproduce excitatory and in-
hibitory co-tuning in auditory cortex [75], where inhibitory neurons are sharply tuned. De-
tailed balance resulted from this rule. In the visual cortex, although orientation selectivity of
inhibitory neurons and the specificity of their wiring is controversial in the experimental litera-
ture [45, 76], mostly a non-specific connectivity of inhibitory neurons for both major subtypes
(i.e. PV+ and SOM+ interneurons) has been reported (see e.g. [64]). We therefore confined our
modeling to PV-expressing interneurons with broad tuning and non-specific connectivity to
conform better to the currently available experimental data. Nevertheless, we were able to show
that the same results can be obtained using the I! E plasticity rule of [50] (S5 Fig), or, in fact,
even without plasticity of I! E connections (S1 Fig).

We assumed non-plastic feedforward connections in our study. The rationale behind this
decision came from experimental results [6], which showed that orientation selectivity is al-
ready in place at eye opening, and only later on, presumably thanks to experience-dependent
plasticity, there is a refinement of intra-cortical connections. Our present work puts a focus on
modeling the second step of the development, i.e. what happens after eye-opening. We think
that, even though the feedforward weights are still plastic during that time, they do not change
orientation selectivity much anymore. Note that feedforward plasticity was studied in a previ-
ous model [6, 26], but the model did not have large recurrent and complex dynamics of excita-
tion and inhibition. Here, instead, we focused on the cooperation of recurrent dynamics and
recurrent plasticity, and we showed how functional networks can operate in balanced regimes
of activity and develop feature-specific connectivity.

It has been shown that while Hebbian learning can extract the first principal component
[77], including inhibition allows us to extract other components as well [78]. Inclusion of re-
current inhibition in realistic network models thus paves the road to study this phenomenon.
It can also cast light on the formation of receptive fields: a non-linear spike-timing-dependent
plasticity (STDP) rule has been recently shown [79] to reduce to a rule similar to the Bienen-
stock-Cooper-Munro (BCM) rule, which can form receptive fields [80]. The excitatory plastici-
ty model (voltage-triplet rule, i.e. a non-linear variant of STDP) used in this paper allows to
extract three point correlation structures in the inputs, as shown in [79]. If this rule is applied
to patches of images that are whitened, receptive fields emerge that are Gabor filters, similar to
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orientation selectivity [26]. In contrast, using standard linear STDP learning, no Gabor filters
can develop. Lateral inhibition can be used to make sure that neurons become selective to dif-
ferent orientations [26] so that the network can recover other components and represent all
the different orientations.

A study using a pair-based STDP rule has shown that plasticity of recurrent excitatory con-
nections may lead a group of neurons to take over the whole network, but including recurrent
(nonplastic) inhibition prevents that and can lead to the emergence of maps [46]. The latter re-
sult is consistent with our network model here, where the balance of excitation and inhibition
keeps the network in a dynamically stable regime, which in turn ensures a linear representation
of the feedforward input [48, 49]. It is, however, difficult to replicate the same winner-take-all
type of behavior reported in [46] in our networks for the following reasons. First, the activity in
our networks is dominated by recurrent input to neurons. Hence, the networks show unstable
activity in absence of recurrent inhibition, since the excitatory recurrent feedback is large. Sec-
ond, the networks are dominated by recurrent plasticity. As a result, when recurrent inhibition
is not present, the output selectivity of responses is very weak and the output selectivity cannot
be enhanced by feedforward plasticity. Because the activity is very weakly selective, the selective
component of the responses cannot dominate in a winner-take-all type of dynamics. The net-
work response, instead, ends up in a pathological state of nonselective activity, where all neu-
rons are active (not shown).

This was not the case, however, for smaller, feedforward-driven networks where recurrent
dynamics did not lead to runaway excitation in absence of inhibition, and where the feedfor-
ward input was dominant such that the receptive fields of neurons were mainly determined by
it (networks developed in [6, 26]). The same winner-take-all behavior as reported in [46] was
observed in absence of inhibition, where all neurons developed the same selectivity. It will be
interesting to see in the future how including feedforward plasticity can change the behavior of
our network model in this respect. This might be particularly pertinent to experimental find-
ings on brain plasticity after lesion, and useful for understanding the mechanisms of brain re-
pair in certain brain diseases.

In conclusion, our study demonstrates how functional balanced networks with realistic re-
current dynamics can work in tandem with Hebbian synaptic plasticity to understand and ex-
plain findings recently reported in experimental studies. It sheds light on the process of
refinement of network responses during development, and elucidates the conditions for the
emergence of feature-specific connectivity in the network. Our results underline the significant
role of inhibition for network function [81], both for the emergence of feature selectivity and
feature-specific connectivity. This work in turn, triggers another important question: Which
functional properties result from feature-specific connectivity in the network [82]? Further the-
oretical and experimental studies are definitely needed to address these questions, but our pres-
ent study indicates some promising directions to further explore large-scale neuronal networks
with realistic recurrent dynamics and synaptic plasticity.

Materials and Methods

Network model
The technical details of network model are described elsewhere [25]. Briefly, the model consists
of a recurrent network of N = 500 leaky integrate-and-fire (LIF) neurons, of which f = 80% are
excitatory and 20% are inhibitory [83]. The sub-threshold dynamics of the membrane potential
uk(t) of neuron k is given by the leaky-integrator equation

t _ukðtÞ þ ukðtÞ ¼ RIkðtÞ: ð1Þ
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The current Ik(t) represents the total input to neuron k, the (leaky) integration of which is gov-
erned by the leak resistance R, and the membrane time constant τ = 20 ms. When the voltage
reaches the threshold at uth = 20 mV, a spike is generated and transmitted to all post-synaptic
neurons, and the membrane potential is reset to the resting potential at u0 = 0 mV.

Each excitatory neuron projects to a randomly sampled population comprising �exc = 30%
of all neurons in the network. Inhibitory neurons project to all neurons in the network (�inh =
100%) [51, 52]. In addition, inhibitory post-synaptic potentials have a g = 8 times larger ampli-
tude than excitatory ones [9, 25]. This choice of parameters is motivated by the dense connec-
tivity of inhibitory neurons reported in different areas of cortex [4, 51, 84]. Post-synaptic
currents are modeled as δ-functions, where the total charge Q is delivered instantaneously to
the post-synaptic neuron after the arrival of a spike, without a synaptic delay. Synaptic coupling
strength is measured in terms of the amplitude of the resulting post-synaptic potential (PSP), J
= QR/τ. Unless stated otherwise, the amplitude of excitatory connections in the local network
is Jexc = 0.5 mV, and that of inhibitory connections Jinh = −gJexc = −4 mV.

Upon presentation of the visual stimulus, an elongated bar with some fixed orientation,
feedforward input is driving cortical neurons. We lump all feedforward synapses to a given
neuron into one single synapse, and model the feedforward input as a single channel with an
untuned and a tuned component. The untuned baseline firing rate of this feedforward input is
sb = 2 kHz, and the amplitude of the input synapses is Jffw = 1 mV. The tuned component of
the input is modulated depending on the orientation of the stimulus, θ, and the preferred ori-
entation (PO) of the neuron, θ�, according to a cosine function

sðy; y�Þ ¼ sb½1þ m cos ð2ðy� y�ÞÞ�: ð2Þ

The parameter μ is the relative modulation amplitude of the input tuning curve, which is set to
μexc = 20% for excitatory neurons, and μinh = 2% for inhibitory neurons, consistent with weaker
tuning of inhibitory neurons reported in the cortex [4, 44, 45].

In our simulations, the feedforward input is represented by a stationary Poisson process of
rate s. To obtain individual tuning curves, as shown in Fig 2, the stimulation of the network is
repeated with 8 different orientations, 0°, 22.5°, 45°, . . ., 157.5°. Selectivity of responses, includ-
ing individual tuning curves, is quantified by a global selectivity index, OSI = 1−circular vari-
ance [25, 36].

The implementation of the LIF model is based on a numerical method known as “exact inte-
gration” [85, 86]. Numerical integration of network dynamics was performed using a time step
of dt = 1 ms. We repeated some of the simulations with a smaller time step (dt = 0.1 ms) to ver-
ify the accuracy of our results.

The simulation code will be published on the freely-available repository ModelDB (http://
senselab.med.yale.edu/modeldb/) after publication.

Plasticity model
The plasticity model is explained in detail elsewhere [6, 26]. Here, it applies only to recurrent
weights, and describes changes in the synaptic amplitude of synapse i (wi) by the equation

d
dt

wi ¼ �ALTDð��u ÞXiðtÞ ½u�ðtÞ � y��þ þ ALTP �xiðtÞ ½uðtÞ � yþ�þ ½uþðtÞ � y��þ; ð3Þ

combined with hard bounds wmin� wi� wmax. wmin and wmax are 0 mV and 2 mV for excit-
atory synapses, and −5 mV and 0 mV for inhibitory synapses, respectively.
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The quantity u�ðtÞ is a low-pass filtered version of the postsynaptic membrane potential u
(t), assuming an exponential kernel with time constant τ−:

t�
d
dt

u�ðtÞ ¼ �u�ðtÞ þ uðtÞ: ð4Þ

The brackets [.]+ denote half-wave rectification ([x]+ = x for x> 0, and [x]+ = 0 otherwise) and
reflect experimental findings showing that postsynaptic depolarization induces a depression of
the synapse only if it exceeds a certain threshold value θ− [29]. The presynaptic spike train is
represented by a sequence of impulses at times tni , XiðtÞ ¼

P
ndðt � tni Þ, where i is the index of

the synapse and n is an index that counts the spike. ALTDð��uÞ is an amplitude parameter that is
under the control of a homeostatic processes [87]. Here it depends on ��u, which is the mean de-

polarization of the postsynaptic neuron, averaged over a time window of size 0.1 s: ALTDð��uÞ ¼
ALTD

��u 2

u2
ref
where u2

ref is a reference value. The variable ��u is used to control the homeostasis, and

therefore the window is longer than all the other time constants. uref defines the target depolari-
zation that the homeostasis is reaching, whereas ALTD is the amplitude for depression of the
rule. See [26] for more details.

For the LTP part, we assume that each presynaptic spike arriving at the synapse wi increases
a synapse-specific trace �xiðtÞ of some biophysical quantity by some fixed value. The trace �xiðtÞ
decays exponentially with a time constant τx in the absence of presynaptic spikes, as described
in previous work [43, 88]. The temporal evolution of �xiðtÞ is described by a linear differential
equation

tx
d
dt

�xiðtÞ ¼ ��xiðtÞ þ XiðtÞ; ð5Þ

where Xi is the input spike train defined above. ALTP is a free parameter inferred from experi-
mental data, and �uþðtÞ is another lowpass filtered version of u(t) similar to �u�ðtÞ, but with a
somewhat shorter time constant τ+. Thus positive weight changes can occur if the momentary
voltage u(t) surpasses a threshold θ+ and, at the same time, the average value �uþðtÞ is above θ−.

The two time constants τ+ and τ− were fitted to several experimental data (see [26]). With-
out the filtering, it is neither possible to reproduce the frequency dependency demonstrated in
[31], nor the classical spike-timing dependent plasticity learning window. The voltage is very
fast during a spike and therefore needs to be filtered to detect the pre-post coincidence. This
rule shows a nice trade-off between the number of parameters and the robustness at describing
the experimental phenomenology [34].

The values of the plasticity parameters in our simulations are: τ− = 10 ms, τ+ = 7 ms, τx = 15

ms, ALTD = 14 × 10−5, ALTP = 8 × 10−5, θ− = −20 mV, θ+ = 7.5 mV, u2
ref ¼ 70mV2. Structural

plasticity is not allowed: only synapses that were initially established undergo potentiation and
depression. Feedforward weights are not plastic. For a justification of network and plasticity
parameters, see [25, 26], respectively. All the parameters are listed in Table 1.

To quantify the amount of bidirectional connectivity emerging as a result of plasticity (as in
e.g. Fig 3) we used a weighted bidirectionality index (WBI). As we did not allow for structural
plasticity in our networks, we quantified this by computing the product of bidirectional weights
between each pair of neurons (wij wji for neurons i and j). If only one neuron is connected to
the other, and the bidirectional connection is completely missing (wij = 0 or wji = 0), the prod-
uct is zero. To obtain WBI of a network, we average over all neuronal pairs in the network. A
completely unidirectionally connected network would therefore return a WBI of zero. For net-
works with bidirectional connections, WBI would be larger than zero. For a specific pair of
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neurons with a similar sum of weights, wij + wji = constant, WBI would be highest if weights
are fully bidirectional, i.e. wij = wji.

To account for the fact that some bidirectional connectivity exists by chance in random net-
works, we shuffle the elements of weight matrix for each network and compute its WBI as
WBIrandom. The normalized WBI, WBInorm, is then obtained by dividing the WBI of the actual
weight matrix of the network by its shuffled WBI: WBInorm =WBI/WBIrandom.

Supporting Information
S1 Fig. Emergence of specific connectivity in a network with a different initial connectivity.
Results are illustrated in the same fashion as in Fig 8, for a network with the following parame-
ters of connectivity: probability of an I! E connection = 80%, J = 0.1, g = 4. I! E weights are
not plastic. Other parameters are the same as the default values. The learning phase is orga-
nized in 20 batches.
(TIF)

Table 1. Table of parameters. Default parameters are given, and only the exceptions are noted for figures with parameters different from the default values.

Parameters of Default values Fig 8 Fig 9 Fig 10 S1 Fig S2 Fig S3 Fig S4 Fig S5 Fig

Single Neurons

membrane time constant τm = 20 ms

resting potential Vrest = 0 mV

threshold voltage Vth = 20 mV

refractory period tref = 0 ms

Network Simulations

# neurons N = 500

fraction of Exc neurons f = 80%

fraction of Inh neurons 1−f = 20%

Exc to Exc conn. prob. �E ! E = 30%

Exc to Inh conn. prob. �E ! I = 30% 80% 80%

Inh to Exc conn. prob. �I ! E = 100%

Inh to Inh conn. prob. �I ! I = 100%

recurrent EPSP (mV) Jexc = 0.5 0.1 N(0.5, 0.5) N(0.1, 0.1)

recurrent IPSP: Jinh = −gJexc g = 8 4 (1, . . ., 8) 4 2

feedforward EPSP (mV) Jffw = 1

feedforward baseline rate νffw = 2 kHz

modulation ratio of Exc input μexc = 20%

modulation ratio of Inh input μinh = 2%

Synaptic Plasticity

θ+ 7.5 mV ±10%

θ
−

−20 mV ±10%

ALTP 8 × 10−5 ±10% +20% for Exc +20% for Inh

ALTD 14 × 10−5 ±10%

τ
−

10 ms

τ+ 7 ms

τx 15 ms

plasticity of I! E [26] [50]

doi:10.1371/journal.pcbi.1004307.t001
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S2 Fig. Effect of the initial distribution of excitatory weights. Same as Fig 6 for the same net-
work, but with a different initial weight matrix. Instead of excitatory weights being either 0 or
Jexc, as in Fig 6, here the amplitudes of non-zero initial connections are drawn from a Gaussian
distribution with mean Jexc and standard deviation Jexc. Rarely occurring negative values are set
to zero.
(TIF)

S3 Fig. Effect of an altered potentiation rate of excitatory connections. The default network
with the same parameters as the network in Fig 1, except for a potentiation rate of excitatory

(to both excitatory and inhibitory) synapses increased by 20%: Aexc
LTP ¼ 9:6� 10�5. Panels and

conventions are the same as in Fig 8.
(TIF)

S4 Fig. Effect of an altered potentiation rate of inhibitory connections. The default network
with the same parameters as the network in Fig 1, except for a potentiation rate of inhibitory

(to excitatory) synapses increased by 20%: Ainh
LTP ¼ 9:6� 10�5. Panels and conventions are the

same as in Fig 8.
(TIF)

S5 Fig. Emergence and evolution of specific connectivity in a network with denser connec-
tivity of E! I and a different plasticity rule for I! E connections. Probability of an I! E
connection is 80% [4], Jexc = 0.1, g = 2. Similar to to S2 Fig, the amplitudes of non-zero initial
E! E connections are drawn from a Gaussian distribution with mean Jexc and standard devia-
tion Jexc. I! E connections are plastic according to the plasticity rule described in [50]. Briefly,
the synaptic weight wij from a pre-synaptic inhibitory neuron j to a post-synaptic excitatory
neuron i is updated at each time step according to the following rule:wij  wij þ Zð�xi � aÞ for
pre-synaptic spikes, and wij ! wij þ Z�xj for post-synaptic spikes [50]. Here, �xj and �xi are

traces obtained by low-pass filtering (similar to Eq 5 with the same time constant τx) spikes
emitted in the pre- and post-synaptic neurons j and i, respectively. η = 0.1 is a learning rate and
α = 0.01 is a depression factor. The parameters are chosen to ensure an output post-synaptic
firing rate of 5 Hz. Other parameters are the same as the default values. The learning phase is
organized in 40 batches. For the spontaneous activity, the network is stimulated with an un-
tuned input with sb. Panels and conventions are the same as in Figs 6–8 of the main text with
the following correspondence: panels (A–K) correspond to Fig 8, A–k; panel (L) corresponds
to Fig 6A; and panel (M) corresponds to Fig 7A.
(TIF)
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