482 research outputs found

    Quantum correlations and least disturbing local measurements

    Get PDF
    We examine the evaluation of the minimum information loss due to an unread local measurement in mixed states of bipartite systems, for a general entropic form. Such quantity provides a measure of quantum correlations, reducing for pure states to the generalized entanglement entropy, while in the case of mixed states it vanishes just for classically correlated states with respect to the measured system, as the quantum discord. General stationary conditions are provided, together with their explicit form for general two-qubit states. Closed expressions for the minimum information loss as measured by quadratic and cubic entropies are also derived for general states of two-qubit systems. As application, we analyze the case of states with maximally mixed marginals, where a general evaluation is provided, as well as X states and the mixture of two aligned states.Comment: 10 pages, 3 figure

    Generalized entropic measures of quantum correlations

    Full text link
    We propose a general measure of non-classical correlations for bipartite systems based on generalized entropic functions and majorization properties. Defined as the minimum information loss due to a local measurement, in the case of pure states it reduces to the generalized entanglement entropy, i.e., the generalized entropy of the reduced state. However, in the case of mixed states it can be non-zero in separable states, vanishing just for states diagonal in a general product basis, like the Quantum Discord. Simple quadratic measures of quantum correlations arise as a particular case of the present formalism. The minimum information loss due to a joint local measurement is also discussed. The evaluation of these measures in a few simple relevant cases is as well provided, together with comparison with the corresponding entanglement monotones.Comment: 9 pages, 2 figure

    Lossy data compression with random gates

    Full text link
    We introduce a new protocol for a lossy data compression algorithm which is based on constraint satisfaction gates. We show that the theoretical capacity of algorithms built from standard parity-check gates converges exponentially fast to the Shannon's bound when the number of variables seen by each gate increases. We then generalize this approach by introducing random gates. They have theoretical performances nearly as good as parity checks, but they offer the great advantage that the encoding can be done in linear time using the Survey Inspired Decimation algorithm, a powerful algorithm for constraint satisfaction problems derived from statistical physics

    Robustness Can Evolve Gradually in Complex Regulatory Gene Networks with Varying Topology

    Get PDF
    The topology of cellular circuits (the who-interacts-with-whom) is key to understand their robustness to both mutations and noise. The reason is that many biochemical parameters driving circuit behavior vary extensively and are thus not fine-tuned. Existing work in this area asks to what extent the function of any one given circuit is robust. But is high robustness truly remarkable, or would it be expected for many circuits of similar topology? And how can high robustness come about through gradual Darwinian evolution that changes circuit topology gradually, one interaction at a time? We here ask these questions for a model of transcriptional regulation networks, in which we explore millions of different network topologies. Robustness to mutations and noise are correlated in these networks. They show a skewed distribution, with a very small number of networks being vastly more robust than the rest. All networks that attain a given gene expression state can be organized into a graph whose nodes are networks that differ in their topology. Remarkably, this graph is connected and can be easily traversed by gradual changes of network topologies. Thus, robustness is an evolvable property. This connectedness and evolvability of robust networks may be a general organizational principle of biological networks. In addition, it exists also for RNA and protein structures, and may thus be a general organizational principle of all biological systems

    Quantum discord and related measures of quantum correlations in XY chains

    Full text link
    We examine the quantum correlations of spin pairs in the ground state of finite XY chains in a transverse field, by evaluating the quantum discord as well as other related entropic measures of quantum correlations. A brief review of the latter, based on generalized entropic forms, is also included. It is shown that parity effects are of crucial importance for describing the behavior of these measures below the critical field. It is also shown that these measures reach full range in the immediate vicinity of the factorizing field, where they become independent of separation and coupling range. Analytical and numerical results for the quantum discord, the geometric discord and other measures in spin chains with nearest neighbor coupling and in fully connected spin arrays are also provided.Comment: accepted in Int. J. Mod. Phys. B, special issue "Classical Vs Quantum correlations in composite systems" edited by L. Amico, S. Bose, V. Korepin and V. Vedra

    Material Availability: A Study of Academic Library Performance

    Get PDF
    This article reports the findings of a study modeled after Saracevic, Shaw, and Kantor\u27s efforts to identify and quantify the causes of users\u27 failures to identify and locate library materials. The researchers analyzed patron-reported and librarian-observed subject and known-item searches and found an overall success rate of only 54 percent. The problems that led to the 46 percent failure rate were analyzed by source and type of failure, and subjective observations concerning problems encountered by patrons were recorded. Recommendations are made for reducing library malfunctions and circulation, patron, and acquisition errors

    Giving meaning to alternative methods to animal testing

    Get PDF
    The 3 rd edition of the advanced theoretical-training course \u201c Giving meaning to alternative methods to animal testing \u201d was held in Genoa on July 6-7, 2017. The theoretical modules included talks by specialists from companies engaged in the field of advanced in vitro technologies, who offered participants the possibility to try out their technologies in the training modules
    corecore