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Quantum correlations and least disturbing local measurements

R. Rossignoli, N. Canosa, L. Ciliberti
Departamento de F́ısica-IFLP, Universidad Nacional de La Plata, C.C. 67, La Plata (1900), Argentina

We examine the evaluation of the minimum information loss due to an unread local measurement
in mixed states of bipartite systems, for a general entropic form. Such quantity provides a measure
of quantum correlations, reducing for pure states to the generalized entanglement entropy, while in
the case of mixed states it vanishes just for classically correlated states with respect to the measured
system, as the quantum discord. General stationary conditions are provided, together with their
explicit form for general two-qubit states. Closed expressions for the minimum information loss as
measured by quadratic and cubic entropies are also derived for general states of two-qubit systems.
As application, we analyze the case of states with maximally mixed marginals, where a general
evaluation is provided, as well as X states and the mixture of two aligned states.

PACS numbers: 03.67.-a, 03.65.Ud, 03.65.Ta

I. INTRODUCTION

There is currently a great interest on new measures of
quantum correlations for mixed states, different from the
entanglement measures [1]. Quantum entanglement is es-
sential for quantum teleportation [2, 3] and also for pure
state quantum computation, where its increase with sys-
tem size is necessary to achieve an exponential speedup
over classical computation [4, 5]. However, the compu-
tation model proposed by Knill and Laflamme [6] has
shown that for mixed states, such speedup can in princi-
ple be achieved without entanglement [7]. This suggests
the subsistence of useful quantum correlations in some
separable mixed states, which, we recall, are defined as
convex mixtures of product states [8]. While a separa-
ble pure state is a product state, separable mixed states
comprise product states, mixtures of commuting prod-
ucts and also mixtures of non-commuting product states.
The latter can possess entangled eigenstates and give rise
to non-classical capabilities.

Consequently, measures such as the quantum discord
[9–12] have recently received much attention. While coin-
ciding with the entanglement entropy for pure states, the
quantum discord is non-zero for separable mixed states
of the last type, vanishing just for classically or one-way
classically correlated states, i.e., states diagonal in a stan-
dard or conditional product basis. The circuit of [6] was
in fact shown in [13] to exhibit a non-negligible discord.
Other measures with similar properties include the one-
way information deficit [14, 15], the geometric discord
[16], based on the standard Hilbert-Schmidt norm, and
the general entropic measures which we defined in [17],
based on generalized entropic forms. The latter contain
the two previous measures as particular cases, embedding
them in a unified picture. Since they are applicable with
entropic forms complying with minimum requirements,
they offer, like the geometric discord, the possibility of
easier evaluations, allowing at the same time to identify
some universal features exhibited by all these measures
[17]. Related generalized measures vanishing just for full
classically correlated states, like those of [18] and [19],

were also considered [17]. Let us remark that important
quantum capabilities of separable states with non-zero
discord, and hence non-zero values of the previous mea-
sures, were recently unveiled [15, 20–23]. Other relevant
properties of the quantum discord and its evaluation in
specific states and scenarios were discussed in [24–35].
The aim of this work is to analyze the explicit eval-

uation of the generalized measures of [17] in some im-
portant general cases. We first provide in Sec. II the
general stationary condition that the least disturbing lo-
cal measurement should satisfy, including conditions for
its independence from the entropy employed (universal-
ity), together with its explicit form for general two-qubit
states. Here we show that in addition to the quadratic
case (geometric discord), the measure based on a cubic
function of the density matrix (“cubic” discord) can also
be exactly evaluated for any state of two qubits. More-
over, for two-qubit states this measure shares with the
geometric discord the same pure state limit, where they
are both proportional to the square of the concurrence
[36, 37]. As specific applications, we provide in sec. III
the general expression for two-qubit states with maxi-
mally mixed reduced states, valid for any entropic form,
analyzing its main features. We also examine their eval-
uation in the so-called X states [32], where explicit ex-
pressions for the quadratic and cubic cases are provided,
and for the important case of a mixture of two aligned
states [33], which represents in particular the exact state
of a pair in the ground state of a finite XY ferromagnetic
spin 1/2 chain in the vicinity of the factorizing field [38].
Differences with the quantum discord, related in particu-
lar with the minimizing measurement, are also discussed.
Conclusions are finally drawn in Sec. IV.

II. FORMALISM

A. Information loss by unread local measurement

Let us consider a bipartite system A+B initially in a
state ρAB. After an unread local von Neumann measure-
ment in system B, defined by orthogonal one dimensional
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projectors PB
j = I ⊗ Pj , with Pj = |jB〉〈jB | (

∑

j Pj = I,

PjPj′ = δjj′Pj), the joint state becomes

ρ′AB =
∑

j

PB
j ρABP

B
j =

∑

j

pjρAB/j , (1)

where pj = Tr ρABP
B
j is the probability of outcome j

and ρAB/j = PB
j ρABP

B
j /pj the state after such outcome.

The state (1) is just the diagonal of ρAB in a conditional
product basis formed by the states |ijj〉 ≡ |ijA〉|jB〉, with
|ijA〉 the eigenstates of ρA/j = TrBρAB/j . The loss of in-
formation due to such measurement, i.e., the information
contained in the off-diagonal elements of the original ρAB

in the previous basis, can be quantified by the quantity
[17]

IMB

f (ρAB) = Sf (ρ
′
AB)− Sf (ρAB) , (2)

where Sf (ρ) denotes a generalized entropy of the form

Sf (ρ) = Tr f(ρ) , (3)

with f : [0, 1] → ℜ a smooth strictly concave function
(f ′′(p) < 0 for p ∈ (0, 1)) satisfying f(0) = f(1) = 0
[39, 40]. This ensures Sf (ρ) ≥ 0 for any state ρ, with
Sf (ρ) = 0 if and only if ρ is a pure state (ρ2 = ρ),
and Sf (ρ) maximum, at fixed dimension n, for the max-
imally mixed state ρ = I/n. Eq. (2) is then non-negative
for any Sf of the previous form, vanishing only if the
original ρAB remains unchanged by such measurement.
This positivity follows from the majorization relation
[3, 40, 41] ρ′AB ≺ ρAB (ρ′AB more mixed than ρAB)
satisfied by the post-measurement state, which implies
Sf (ρ

′
AB) ≥ Sf (ρAB) for all such Sf [17]. Moreover, the

previous entropic inequality implies in fact majorization
when valid for all Sf of the previous form [42].

The minimum of IMB

f among all local measurements,

IBf (ρAB) = Min
MB

IMB

f (ρAB) , (4)

provides a measure of the quantum correlations between
A and B present in the original state and destroyed by
local measurement [17]. It vanishes only if ρAB is already
of the “classical” (with respect to B) form (1). For such
states there is an unread local measurement in B (MB)
which leaves the state invariant. Eq. (4) is obviously not
affected by local unitary transformations.
In the case of pure states (ρ2AB = ρAB), it can be shown

that (4) becomes the generalized entanglement entropy

IBf (ρAB) = Ef (A,B) ≡ Sf (ρA) = Sf (ρB), (5)

where ρA = TrB ρAB and ρB are the reduced states of
each subsystem [17]. Hence, pure state entanglement can
be seen as the minimum information loss due to a local
measurement. In this case IBf (ρAB) = IAf (ρAB), an iden-
tity which does not hold in general for mixed states.
In the von Neumann case Sf (ρ) = S(ρ) ≡ −Trρ log ρ,

Eq. (2) can be also written as [17]

IMB (ρAB) = S(ρ′AB)− S(ρAB) = S(ρAB||ρ′AB) , (6)

where S(ρ||ρ′) = −Tr ρ(log ρ′ − log ρ) is the relative en-
tropy [3, 40, 43] (a non-negative quantity), since ρ′AB is
the diagonal of ρAB in a certain basis. The minimum IB

of Eq. (6) coincides with the one-way information deficit
[14, 15] and also with one of the measures discussed in
[18]. In the case of pure states, IB reduces to the stan-
dard entanglement entropy E(A,B) = S(ρA) = S(ρB).
In the case of the so-called linear entropy

S2(ρ) = 2(1− Tr ρ2) , (7)

which is a quadratic function of ρ and corresponds to
f(ρ) = 2ρ(1− ρ) in (3), Eq. (2) can be written as [17]

IMB

2 (ρAB) = S2(ρ
′
AB)−S2(ρAB) = 2||ρ′AB−ρAB||2 , (8)

where ||O||2 = TrO†O is the squared Hilbert-Schmidt
norm. The ensuing minimum (4), to be denoted here as
IB2 , becomes then equivalent [17] to the geometric discord
of ref. [16], defined as the minimum Hilbert-Schmidt dis-
tance between ρAB and any classically correlated state
of the form (1). In the case of pure states, IB2 reduces to
the square of the pure state concurrence (i.e., the tangle),

defined as CAB =
√

2(1− Tr ρ2A) [37].
In the same way we may define the q information loss

IMB
q (ρAB) = Sq(ρ

′
AB)− Sq(ρAB) , (9)

Sq(ρ) = (1 − Trρq)/(1− 21−q) , q > 0 , (10)

where Sq(ρ) is the so-called Tsallis entropy [44], which
corresponds to f(ρ) = (ρ − ρq)/(1 − 21−q) in (3) and is
a function of the Renyi entropy. Eq. (10) reduces to the
linear entropy (7) for q = 2 and to the von Neumann
entropy for q → 1, with log = log2 for the present nor-
malization (chosen such that Sq(ρ) = 1 for a maximally
mixed single qubit state, i.e., 2f(1/2) = 1). Eq. (9) al-
lows in particular to switch continuously from the von
Neumann case (6) to the quadratic case (7).
On the other hand, the original quantum discord [9–

12] is based on the von Neumann entropy and can be
written (considering von Neumann measurements) as

DB(ρAB) = Min
MB

[IMB (ρAB)− IMB (ρB)] . (11)

It contains an additional term IMB (ρB) = S(ρ′B)−S(ρB)
related to the local information loss and was actually de-
fined in [9] as the minimum difference between the initial
mutual information

I(A : B) = S(ρA ⊗ ρB)− S(ρAB) , (12)

where S(ρA⊗ρB) = S(ρA)+S(ρB), and that after the lo-
cal measurement, IMB (A : B) = S(ρ′A)+S(ρ′B)−S(ρ′AB).
Since ρ′A = ρA, such difference reduces to Eq. (11).
The information loss (2) can be regarded in fact as a

type of generalized mutual information. Eq. (12) is a
measure of the total correlations between A and B in the
original state, absent in the product state ρA ⊗ ρB. The
latter is the state which maximizes the von Neumann
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entropy subject to the constraint of providing just all
local averages 〈O⊗I〉 and 〈I⊗O〉, i.e., the correct reduced
states ρA and ρB. This is in fact what is expressed by
the positivity of Eq. (12): Any other state ρAB with the
same local reduced states has a smaller entropy.
On the other hand, the post-measurement state (1) can

be seen as the more mixed state providing the same aver-
ages as ρAB of all observables of the form

∑

j αjOj ⊗Pj ,

diagonal in the local basis defined by MB (as Tr ρAB O⊗
Pj = Tr ρ′AB O ⊗ Pj), such that Sf (ρ

′
AB) ≥ Sf (ρAB) ∀

Sf . The difference IMB

f is then a measure of the corre-

lations 〈O ⊗ |jB〉〈kB |〉, k 6= j, contained in the original
state ρAB and absent in ρ′AB. In particular, if MB is a
measurement in a basis where ρB is diagonal, ρ′AB re-
produces not only ρA (ρ′A = TrB ρ′AB = ρA ∀ MB) but
also ρB (ρ′B = TrA ρ′AB = ρB for this measurement), as
well as all averages 〈O⊗Pj〉, being the more mixed state
with such property. Notice that in contrast with ρ′AB,
the state ρA ⊗ ρB is in general not more mixed than the
original state (ρA ⊗ ρB ≺/ ρAB), so that the positivity of
Eq. (12) cannot be extended to a general entropy.

B. General stationary condition

Let us now derive the equations determining the least
disturbing local measurement defined by Eq. (4).
Theorem 1. For a given entropic function f , the least
disturbing local measurement satisfies the equation

TrA[f
′(ρ′AB), ρAB ] = 0 , (13)

where f ′ is the derivative of f and ρ′AB the post-
measurement state (1).
Proof: The generalized entropy of the state (1) is

Sf (ρ
′
AB) =

∑

i,j

f(pij) , pij = 〈ijj|ρAB|ijj〉 , (14)

where 〈ijj|ρAB|kjj〉 = δikp
i
j. Considering a small uni-

tary variation of the local measurement basis, such that
δ|jB〉 = (eiδh − 1)|jB〉 ≈ iδh|jB〉, with δh a small local
hermitian operator, we have δpij ≈ i〈ijj|[ρAB, δhB]|ijj〉
up to first order in δh, with δhB = I ⊗ δh. Hence,

δIMB

f =
∑

i,j

f ′(pij)δp
i
j = iTr [f ′(ρ′AB), ρAB]δhB

= iTrB (TrA[f
′(ρ′AB), ρAB])δh .

The condition δIMB

f = 0 ∀ δh leads then to Eq. (13).

Eq. (13) implies explicitly
∑

i f
′(pij)〈ijj|ρAB|ijk〉 =

∑

i f
′(pik)〈ikj|ρAB|ikk〉 ∀ k, j, and determines a certain

set of feasible local basis {|jB〉}. Note that the states |ij〉
of A depend in general on j.
The minimizing local basis {|jB〉} will not diagonal-

ize, in general, the reduced state ρB . Nonetheless, Eq.
(13) entails that the local eigenstates can be optimum
in some important situations: If in a standard product

basis {|ij〉 = |iA〉|jB〉} formed by eigenstates of ρA and
ρB the only off-diagonal elements of ρAB are 〈ij|ρAB|kl〉
with i 6= k and j 6= l, such that

〈ij|ρAB|ik〉 = δjkp
i
j , 〈ij|ρAB|lj〉 = δilp

i
j , (15)

Eq. (13) is trivially satisfied ∀ Sf for a measurement
in the basis {|jB〉}. Such basis would then provide a
universal stationary point of IBf . This is precisely the
case of a pure state, written in the Schmidt basis as
|ΨAB〉 =

∑

k

√
pk|kAkB〉, and also of a mixture of |ΨAB〉

with the maximally mixed state,

ρAB = x|ΨAB〉〈ΨAB |+ 1−x
n I , x ∈ [0, 1] ,

where Eqs. (15) and hence (13) will be satisfied ∀ f for
a measurement in the basis {|kB〉}. It was shown in [17]
that such basis provides the universal least disturbing lo-
cal measurement for these states, minimizing IMB

f ∀ Sf .

In the case of the linear entropy, f ′(ρ′AB) ∝ I − 2ρ′AB

and Eq. (13) becomes just TrA[ρ
′
AB, ρAB] = 0, indicating

that the post-measurement state ρ′AB should locally (in
B) commute with the original state.
In the case of the original discord (11), the additional

local term leads in the variation to the modified equation

TrA[f
′(ρ′AB), ρAB]− [f ′(ρ′B), ρB] = 0 , (16)

where here f ′(ρ) can be replaced by − log ρ.

C. The two-qubit case

Let us now examine in detail the case of two-qubits.
Any state of a two qubit system can be written as

ρAB =
1

4
(I + rA · σA + rB · σB + σ

t
AJσB) , (17)

where σA ≡ σ⊗I, σB ≡ I⊗σ, with σ
t = (σx, σy, σz) the

Pauli operators and I the identity (in the corresponding
space). The basic traces tr σµ = 0, tr σµσν = 2δµν for
µ, ν = x, y, z, ensure that

rA = 〈σA〉 , rB = 〈σB〉 , J = 〈σAσ
t
B〉 ,

i.e., Jµν = 〈σAµ σBν〉, where 〈O〉 = Tr ρAB O.
Any complete local projective measurement in B can

be considered as a spin measurement along the direc-
tion of a unit vector k, represented by the orthogonal
projectors P±k = 1

2 (I ± k · σ). This leaves just those
elements of ρAB proportional to k · σ, leading to the
post-measurement state

ρ′AB =
1

4
[I + rA ·σA +(rB ·k)k ·σB +(σt

AJk)(k ·σB)] ,

(18)
which corresponds to rB → kk

t
rB and J → Jkkt in

(17). The information loss due to this measurement will
be denoted as Ikf ≡ Sf (ρ

′
AB)− Sf (ρAB).
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We now show that the general stationary condition for
the measurement direction k in B reads

α1rB + α2J
t
rA + α3J

tJk = λk , (19)

i.e., k × (α1rB + α2J
t
rA + α3J

tJk) = 0, where λ is a
proportionality factor and the coefficients αi are given by

(α1, α2, α3) =
1
4

∑

µ,ν=±1
f ′(pµν )(ν,

νµ
|rA+νJk| ,

µ
|rA+νJk| ) ,

(20)
with pµν (µ, ν = ±1) the eigenvalues of (18):

pµν = 1
4 (1 + νrB · k + µ|rA + νJk|) . (21)

Proof: The state (18) is diagonal in the conditional
product basis formed by the eigenstates of k · σB and
(rA + νJk) · σA, with ν = ±1 the eigenvalues of k · σB,
which leads to the eigenvalues (21). We can then write

f ′(ρ′AB) =
1
4

∑

ν,µ
f ′(pµν )(I + µ rA+νJk

|rA+νJk| · σA)(I + νk · σB) .

Using now the basic trace relations and [r · σ, s · σ] =
2i(r × s) · σ, we obtain TrA [(r · σA)(s · σB),σ

t
AJσB] =

4i(s× J t
r) · σB and hence

TrA [f ′(ρ′AB), ρAB] = i[k×(α1rB+α2J
t
rA+α3J

tJk)]·σB ,

with αi given by (20). Eq. (13) leads then to Eq. (19).
We can also check Eq. (19) directly. From (21), we

have δpµν = ν
4 (rB + µJt(rA+νJk)

|rA+νJk| ) · δk for changes δk in

the direction of the local measurement apparatus, with
k · δk = 0 since k is a unit vector. The condition
δIkf =

∑

ν,µ f
′(pµν )δp

µ
ν = 0 then implies (α1rB+α2J

t
rA+

α3J
tJk) · δk = 0, which leads to Eq. (19) since δk is or-

thogonal to k.
Writing k = (sin γ cosφ, sin γ sinφ, cos γ), Eq. (19)

leads to a transcendental system for γ, φ (tan γ =

dz/
√

d2x + d2y , tanφ = dy/dx, with d the l.h.s. of (19)).

Eq. (19) can be also seen as a self-consistent eigenvalue
equation for the matrix (α1rB + α2J

t
rA)k

t + α3J
tJ .

Let us remark that the initial reduced local state ρB =
TrA ρAB = 1

2 (I + rB · σ), becomes

ρ′B = 1
2 [I + (rB · k)(k · σ)] , (22)

after the local measurement. The minimizing direction
k will depend on the matrix J and may obviously devi-
ate from rB, changing the local state. A “transition” in
the direction of the least disturbing k, from rB to the
direction of the main eigenvector of J tJ , can then be ex-
pected from (19) as J increases from 0, whose details will
in general depend on the choice of entropy (see sec. III).
In the case of the original quantum discord (11), the

extra local contribution in (16) leads to the modified sta-
tionary condition (see also [34])

(α1 − η)rB + α2J
t
rA + α3J

tJk = λk , (23)

where η = 1
2

∑

ν=± νf ′(pν) = 1
2 log(p−/p+), with pν =

∑

µ p
µ
ν = 1

2 (1+ νrB ·k) the eigenvalues of ρ′B. The extra
term −ηrB will tend to diminish the effect of rB, favoring
the direction determined by J tJ .

D. The quadratic and cubic information measures

While the evaluation of a general entropy Sf (ρ) re-
quires the determination of the eigenvalues of ρ, for those
choices of f involving just low integer powers of ρ, Sf (ρ)
can be determined without their explicit knowledge. For
instance, using just the basic trace relations tr σµ = 0.
trσµσν = 2δµν , the linear entropy (7) of any two qubit
state can be evaluated as

S2(ρAB) =
3
2 − 1

2 (|rA|
2 + |rB|2 + ||J ||2) , (24)

where ||J ||2 = tr J tJ and |r|2 = r · r = r
t
r. For the

post-measurement state (18), Eq. (24) becomes

S2(ρ
′
AB) =

3
2 − 1

2 |rA|
2 − 1

2k
tM2k, (25)

M2 = rBr
t
B + J tJ , (26)

where M2 is a positive semidefinite symmetric matrix.
The information loss becomes therefore

Ik2 = 1
2 (|rB|2 + ||J ||2 − k

tM2k) =
1
2 (trM2 − k

tM2k) .
(27)

The minimum Ik2 is just twice the geometric discord, de-
fined and evaluated for two qubits in [16]. It corresponds
then to k directed along the eigenvector with the largest
eigenvalue of the matrix M2:

IB2 (ρAB) = Min
k

Ik2 = 1
2 (trM2 − λ1) =

1
2 (λ2 + λ3)(28)

where (λ1, λ2, λ3) are the eigenvalues of M2 sorted in de-
creasing order. A state ρAB which is already of the form
(18) leads to IBf (ρAB) = 0 ∀ Sf and is then character-

ized by a matrix M2 of rank 1 (such that λ2 = λ3 = 0).
It is verified that for f ′(pµν ) ∝ 1 − 2pµν , Eq. (19) re-
duces to the present eigenvalue equationM2k = λk, since
(α1, α2, α3) ∝ (rB · k, 0, 1).
Another entropy which can be easily evaluated for any

state of two qubits is the q = 3 case in (10),

S3(ρ) =
4
3 (1− Tr ρ3) . (29)

Theorem 2. The entropy (29) of the general two qubit
state (17), and the ensuing minimum information loss
IB3 (ρAB) due to a local measurement in B, are given by

S3(ρAB) =
1
2 [S2(ρAB) + 1− (rt

A J rB − detJ)] , (30)

IB3 (ρAB) = Min
k

Ik3 = 1
4 (trM3 − 2 detJ − λ1)

= 1
4 (λ2 + λ3)− 1

2 detJ , (31)

where S2(ρAB) is the entropy (24) and (λ1, λ2, λ3) are
the eigenvalues, sorted in decreasing order, of the matrix

M3 = rBr
t
B + J tJ + rBr

t
AJ + J t

rAr
t
B , (32)

which is positive semidefinite.
Proof: Applying the basic trace relations together with
trσµσνστ = 2iǫµντ , with ǫ the full antisymmetric ten-
sor (µ, ν, τ ∈ {x, y, z}), the only terms with non-zero
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trace in ρ3 are Tr(rt
AσA)(σ

t
AJσB)(rt

BσB) = 4rt
AJrB

(and the same for its 3! permutations), Tr(σt
AJσB)

3 =
3!(2i)2detJ and the quadratic terms appearing already
in Tr ρ2. This leads to to Eq. (30).
Using Eq. (30), the cubic entropy of the post-

measurement state (18) can be expressed as

S3(ρ
′
AB) =

5
4 − 1

4 (|rA|
2 + k

tM3k) , (33)

where M3 is the matrix (32), since rt
AJrB = tr rBr

t
AJ =

tr J t
rAr

t
B and det(Jkkt) = 0. The matrix M3 is clearly

symmetric and also positive semi-definite, as k
tM3k ≥

(|k · rB| − |Jk|)2 ≥ 0 ∀ k if |rA| ≤ 1. The information
loss Ik3 = S3(ρ

′
AB)− S3(ρAB) is therefore

Ik3 = 1
4 (trM3 − 2 detJ − k

tM3k) , (34)

where trM3 = |rB|2+ ||J ||2+2rt
AJrB. Its minimum cor-

responds then to k along the eigenvector with the largest
eigenvalue of M3, which leads to Eq. (31).
It is also verified that Eq. (19) leads in the present

case to the same eigenvalue equation M3k = λk, since
(α1, α2, α3) ∝ (rt

Bk + r
t
AJk, r

t
Bk, 1) for f ′(pµν ) ∝ 1 −

3(pµν )
2. As opposed to Ik2 , the minimizing measurement

can now depend also on rA through the last terms of M3.
A state of the form (18) is then characterized by matrices
M3 and J of rank 1, such that Eq. (31) vanishes.
Let us notice that under arbitrary local rotations σα →

Rασα for α = A,B (RαR
t
α = I, detRα = +1), we

have rα → Rt
αrα and J → Rt

AJRB in (17), such that
M2 → Rt

BM2RB and M3 → Rt
BM3RB. Their eigenval-

ues remain therefore invariant. Of course, det J and all
other terms in Eqs. (24) and (30) remain also unaltered.
Eqs. (24) and (30) provide in fact strict bounds on

these invariants. As S2(ρAB) ≥ 0 ∀ ρAB, Eq. (24) implies

|rA|2 + |rB|2 + ||J ||2 ≤ 3 , (35)

with |rA|2 + |rB|2 + ||J ||2 = 3 if and only if ρAB is pure

(ρ2AB = ρAB, S2(ρAB) = 0). Moreover, as Tr ρq
′ ≤ Tr ρq

if q′ > q > 0, for the present normalization we have
S3(ρ) ≥ 2

3S2(ρ), which for a two qubit state implies

r
t
AJrB − detJ ≤ 1− 1

3S2(ρAB) , (36)

with r
t
AJrB−detJ = 1 if and only if ρAB is pure. We can

verify these results by writing a pure state of two qubits
in the Schmidt basis, |ΨAB〉 =

√
p |00〉+√

1− p |11〉, with
p ∈ [0, 1], which leads to |rA| = |rB| = |2p− 1|, ||J ||2 =
1+8p(1−p), rt

AJrB = (2p−1)2 and detJ = −4p(1−p),
and hence to equality in (35)–(36).
An important final remark concerning the quadratic

and cubic entropies is that for an arbitrary single qubit
state ρA = 1

2 (I2+rA·σ) they are identical, since trσm
µ = 0

for m odd:

S2(ρA) = S3(ρA) = 1− |rA|2 . (37)

This entails that the corresponding entanglement mono-
tones [45] for a two-qubit state are also identical [17], co-
inciding with the square of the concurrence CAB [36, 37].

Both quantities IB2 and IB3 reduce then to the squared
concurrence C2

AB in the case of a pure two-qubit state.
This last result can be directly verified using the previ-

ous Schmidt decomposition: Both matrices M2 and M3

become diagonal in the ensuing z basis, their two low-
est eigenvalues being identical: λ2 = λ3 = 4p(1 − p) =
−detJ . Eqs. (28) and (31) lead then to IB2 = IB3 =

4p(1−p), which is just the square of CAB = 2
√

p(1− p).

III. APPLICATION

A. States with maximally mixed reduced states

As a first example, let us consider the case rA = rB =
0 in (17), such that ρA = ρB = 1

2I and

ρAB = 1
4 (I + σ

t
AJσB) . (38)

We will show that for the state (38):
a) The measurement direction k in system B minimizing
IBf is universal, i.e., the same for any entropy Sf , and
given by that of the eigenvector with the largest eigen-
value of the matrix J tJ .
b) The ensuing minimum information loss is given by

IBf (ρAB) = 2f(p1+p2

2 ) + 2f(p3+p4

2 )

−f(p1)− f(p2)− f(p3)− f(p4) , (39)

where (p1, p2, p3, p4) are the eigenvalues of (38) sorted in
decreasing order.
c) IAf = IBf ∀ f , the minimizing direction in A being that

of the eigenvector with the largest eigenvalue of JJ t.
Proof of a): For rA = rB = 0, the eigenvalues (21)
of ρ′AB become pµν (k) = 1

4 (1 + νµ|Jk|), being two-fold
degenerate. If km is the normalized eigenvector with
the largest eigenvalue (J2

m) of J tJ , we have |Jk| =√
ktJ tJk ≤

√

kt
mJ tJkm = |Jm| for any unit vector k,

and hence pµµ(k) ≤ pµµ(km). This implies that the distri-
bution {pνµ(k)} is majorized [41] by {pνµ(km)}, i.e.,

ρ′AB(k) ≺ ρ′AB(km) = 1
4 [I+Jm(k̃m ·σA)(km ·σB)] , (40)

where k̃m = Jkm/Jm is the corresponding eigenvector
of JJ t, entailing Sf (ρ

′
AB(k)) ≥ Sf (ρ

′
AB(km)) and hence

Ikf ≥ Ikm

f ∀ k and Sf . The state ρ
′
AB(km) is thus the least

mixed classical state associated with ρAB, and measure-
ment along km the least disturbing local measurement (in
B) for any Sf . Accordingly, the general stationary con-
dition (19) leads in this case to the eigenvalue equation
J tJk = λk ∀ f , with both matrices M2 and M3 of Eqs.
(26), (32) reducing to J tJ .
This result is apparent. The local axes can be always

chosen such that the matrix J is diagonal. This can be
achieved through its singular value decomposition J =
UAJ

dU t
B, where Jd

µν = Jµδµν , with J2
µ the eigenvalues of

J tJ (the same as those of JJ t) and UA, UB orthonormal
matrices (UαU

t
α = I). The signs of the Jµ should be



6

chosen such that Uα are rotation matrices (detUα = +1).
Replacing σα → Uασα in (38), we then obtain

ρAB = 1
4 (I +

∑

µ=x,y,z

JµσAµσBµ) . (41)

Since |Jm| = Max{|Jµ|}, the universal least disturbing
measurement is, therefore, along the maximally corre-
lated direction, leaving the largest term of (41) in the
post-measurement state (40). Note that Eq. (41) satis-
fies Eqs. (15) in a product basis formed by the eigenstates
of σAµσBµ, for any µ = x, y, z.
Proof of b): Eq. (41) is diagonal in the Bell basis

{|Ψ1,2〉 = |00〉±|11〉√
2

, |Ψ3,4〉 = |01〉±|10〉√
2

}, i.e., ρAB =
∑

i pi|Ψi〉〈Ψi|, with eigenvalues

p1,2 =
1+Jz±(Jx−Jy)

4 , p3,4 =
1−Jz±(Jx+Jy)

4 .

Without loss of generality we may always choose the local
axes x, y, z such that |Jm| = |Jz | ≥ |Jx| ≥ |Jy|, with
Jz ≥ 0, Jx ≥ 0 (rotations of angle π around one of the
axes in A or B lead to Jµ → −Jµ for the other axes). In
such a case p1 ≥ p2 ≥ p3 ≥ p4, and the least disturbing
measurement is along z, such that Eq. (40) becomes

ρ′AB(km) = 1
4 (I + JzσAzσBz) , (42)

having degenerate eigenvalues

1+Jz

4 = p1+p2

2 , 1−Jz

4 = p3+p4

2 .

The minimum information loss IBf (ρAB) =

Sf (ρ
′
AB(km)) − Sf (ρAB) becomes therefore Eq. (39),

where (p1, p2, p3, p4) are in general the eigenvalues of
ρAB sorted in decreasing order.
Proof of c): Since Eq. (39) is fully determined by the
sorted eigenvalues of ρAB, we have obviously IAf = IBf ,
a result which is apparent from the symmetric represen-
tation (41). From (40) it is seen that the minimizing

measurement in A is along k̃m.
Let us now discuss the main features of Eq. (39). It is

verified that the strict concavity of f ensures IBf (ρAB) ≥
0 ∀ Sf , with IBf (ρAB) = 0 only if p1 = p2 and p3 = p4,

in which case ρAB = ρ′AB = p1(|00〉〈00| + |11〉〈11|) +
p3(|01〉〈01|+ |10〉〈10|) is a classically correlated state.
In the von Neumann case f(p) = −p log p, Eq. (39) is

just the quantum discord DA = DB of the state, coin-
ciding with the result of ref. [29]. For the states (38),
ρ′B = ρB = 1

2I for any MB, entailing that the quantum
discord (11) reduces to the information deficit, i.e., to the
present quantity IBf for the von Neumann choice of f .

In the quadratic case (7), Eq. (28) or (39) lead to

IB2 (ρAB) =
1
2 (J

2
x + J2

y ) = (p1 − p2)
2 + (p3 − p4)

2 , (43)

which is just twice the geometric discord of the state,
whereas in the cubic case (30), Eqs. (31) or (39) lead to

IB3 (ρAB) =
1
4 (J

2
x + J2

y )− 1
2JxJyJz (44)

= (p1 − p2)
2(p1 + p2) + (p3 − p4)

2(p3 + p4)(45)

0.25 0.5 0.75 1.0
p1

0.5

1.0

I qB

q=2
q=3
CAB

2

0.25 0.5 0.75 1.0p
1

0.5

I 1B q =1
E
AB

FIG. 1. The maximum and minimum values reached by the
quantum correlation measures IB2 (ρAB) and IB3 (ρAB) in the
state (38), Eqs. (43)–(45), as a function of its maximum eigen-
value p1. The common minimum is just the squared concur-
rence C2

AB, whereas the respective maximum is indicated by
the dashed and dashed-dotted lines. The inset depicts the
maximum and minimum values reached in this state by IBf in
the von Neumann case (q = 1, log = log2), where it coincides
with the quantum discord, with the solid line depicting the en-
tanglement of formation. The least disturbing measurement
is here the same for all entropies, and along the direction of
the main principal axis of JtJ (see text). Quantities plotted
are dimensionless in all figures.

which is just the average of the terms in (43) and implies
IB3 (ρAB) ≤ IB2 (ρAB).
Let us notice that for small Jµ, Eq. (39) becomes in

fact proportional to (43) for any Sf : Setting Jm = Jz ,

IBf (ρAB) ≈ 1
2cf (J

2
x + J2

y ) +O(J3) = cfI
B
2 (ρAB) +O(J3)

(46)
with cf = − 1

4f
′′(14 ) > 0. This implies a universal behav-

ior in the vicinity of the maximally mixed state I/4, in
agreement with the general results of [17].
Relation with entanglement. It is well known that the

state (38) is entangled if and only if its largest eigenvalue
p1 satisfies p1 > 1/2. Its concurrence [36] is given by

CAB = Max[2p1 − 1, 0] , (47)

with 2p1 − 1 = p1 − p2 − p3 − p4. This implies

IB2 ≥ C2
AB, IB3 ≥ C2

AB , (48)

with equality for CAB > 0 valid in both cases only if
p3 = p4 = 0 (C2

AB ≤ (p1 − p2)
2 − (p1 − p2)(p3 + p4) ≤

(p1 − p2)
2(p1 + p2) if p3 + p4 ≤ p1 − p2). Eq. (48) means

that for the states (38), IB2 and IB3 are both upper bounds
to their corresponding entanglement monotone. This is
not a general property. For instance, it is not valid in
the von Neumann case f(ρ) = −ρ log ρ, where Eq. (39)
can be lower than the entanglement of formation EAB =
∑

ν=± f(
1+ν

√
1−C2

AB

2 ) [36] for the present states.
Fig. 1 depicts the maximum and minimum values

reached by IB2 and IB3 in the states (38) for fixed val-
ues of the maximum eigenvalue p1. The common mini-
mum is just the squared concurrence C2

AB , reached for
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p3 = p4 = 0 if p1 ≥ 1/2 (and p2 = p1, p3 = p4 if
p1 ≤ 1/2). The maximum is reached for p2 = p3 = p4
if p1 ≥ 7/13 ≈ 0.54 for I2 and p1 & 0.44 for I3, and
for p2 = p3, p4 = 0, if p1 lies below the previous values
and above 1/3. As a result, the maximum values for zero
concurrence of I2 and I3 within these states are 1/8 and
2/27 respectively, obtained at p1 = 1/2.
In contrast, in the von Neumann case the minimum

(again obtained for p3 = p4 = 0 if p1 ≥ 1/2) lies clearly
below EAB ∀ p ∈ (1/2, 1), and even the maximum (at-
tained at p2 = p3 = p4 if p & 0.86 and p2 = p3, p4 = 0
if 1/3 ≤ p1 . 0.86) lies below EAB if p1 & 0.91. If
p ≤ 1/3 the maximum in these three measures is reached
for p2 = p3 = p1.

B. States with parity symmetry

Let us now consider the case where both rA and rB

are directed along the same principal axis, i.e., rB along
k and rA along Jk, with k an eigenvector of J tJ (and
hence, Jk an eigenvector of JJ t). Choosing these axes
as the local z axes, such that rA = rAkz, rB = rBkz and
Jµν = Jµδµν , such state can be written as

ρAB = 1
4 (I + rAσAz + rBσBz +

∑

µ=x,y,z

JµσAµσBµ) (49)

=
1

4







a+ 0 0 α+

0 c+ α− 0
0 α− c− 0
α+ 0 0 a−






,
a± = 1 + Jz ± (rA + rB)
c± = 1− Jz ± (rA − rB)
α± = Jx ∓ Jy

.

where the matrix is the representation in the standard
basis of σAzσBz eigenstates. This state commutes with
the spin parity [38] Pz = − exp[iπ(σAz + σBz)/2]. It is
also denoted as an X state [32].
We will now show that a measurement of σB along

any of the principal axes x, y, z will provide a stationary
point of Ikf ∀ Sf .

Proof: For a measurement along the z axis (k = kz),
i.e., along the axis where ρB is diagonal, J tJkz = J2

zkz,
rA and rB are all along this axis and Eq. (19) is then
trivially satisfied ∀ αi. It is a particular case of Eq. (15),
which here holds in the standard basis.
For a measurement along the x axis (k = kx), J

tJkx =

J2
xkx while rB · kx = 0 and |rA + νJkx| =

√

r2A + J2
x .

Hence pµν = 1
4 (1 + µ|rA + νJkx|) is independent of ν.

This leads to α1 = α2 = 0 in (20), in which case Eq. (19)
is again satisfied. For k = ky the argument is similar.
We also remark that these arguments also apply to the
quantum discord (11), as η = 0 in (23) for k = kx or ky.
While other stationary directions may also exist, the

principal axes are strong candidates for minimizing Ikf .
Typically, the minimum will be attained for measure-
ments along z if Max[|Jx|, |Jy|] is sufficiently small, while
otherwise measurements along x or y will be preferred.
A transition between these two regimes will arise as Jx
or Jy increases, whose details will depend on the entropic
function and may involve intermediate directions k.

Writing k = (sin γ cosφ, sin γ sinφ, cos γ), these inter-
mediate solutions can be found from Eq. (19), which leads
here to φ = 0 or φ = π/2 (if |Jx| > |Jy| the minimum cor-
responds to φ = 0 for any Sf , as the ensuing distribution
majorizes that for φ = π/2) and to γ = 0 or

cos γ =
α1rB + α2JzrA
α3(J2

x − J2
z )

, (50)

where we have assumed |Jx| > |Jy| such that φ = 0. The
intermediate solutions |γ| ∈ (0, π/2) of (50), if existent,
are degenerate, as both choices ±γ lead to the same Ikf .
Just the principal axes solutions are non-degenerate.
The final expression for IBf is formally

IBf (ρAB) =
∑

µ,ν=±
f(pµν )− f(λµ

ν ) , (51)

where pµν = 1
4 (1+νrBkz +µ

√

(rA + νJzkz)2 + J2
xk

2
x) are

the eigenvalues (21) of ρ′AB and λµ
ν those of ρAB:

λµ
ν = 1

4 [1 + νJz + µ
√

(rA + νrB)2 + (Jx − νJy)2] . (52)

We can verify the previous results in the quadratic and
cubic cases. For an X state both matrices M2 and M3

(Eqs. (26), (32)) are diagonal in the principal axes basis:

M2µν
= δµν(J

2
µ + δµzr

2
B) ,

M3µν
= δµν [J

2
µ + δµz(r

2
B + 2rBrAJz)] .

Hence, the optimum measurement will be along the axis
with the maximum diagonal value and no intermediate
solutions will arise (for non-degenerate eigenvalues), as
opposed to the general case. Assuming |Jy| < |Jx|, a
“sharp” z → x transition for the least disturbing mea-
surement will then take place, the x axis preferred for

J2
x > J2

z + r2B , q = 2 , (53)

J2
x > J2

z + r2B + 2rBrAJz , q = 3 (54)

in the quadratic and qubic cases respectively, such that

IB2 (ρAB) =
1
2{J

2
y +Min[J2

x , r
2
B + J2

z ]} , (55)

IB3 (ρAB) =
1
4{J

2
y − 2JxJyJz +Min[J2

x , r
2
B + J2

z + 2rArBJz ]} .
(56)

These expressions are in general no longer upper bounds
to the squared concurrence, which for these states is
CAB = 1

2Max[|α+|−√
c+c−, |α−|−√

a+a−, 0]. Nonethe-
less, IB2 remains an upper bound to C2

AB in the “z phase”,
as C2

AB ≤ 1
4 (Jx ± Jy)

2 ≤ 1
2 (J

2
x + J2

y ).

C. Mixture of aligned states

As a particular relevant example of Eq. (49), we will
consider the mixture of two states with spins aligned
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along different directions. Choosing the z axis as the
bisector, such state can be written as

ρAB = 1
2 (|θθ〉〈θθ| + | − θ − θ〉〈−θ − θ|) (57)

=
1

4







a+ 0 0 c
0 c c 0
0 c c 0
c 0 0 a−






,
a± = (1± cos θ)2

c = sin2 θ
,(58)

which corresponds to (Jx, Jy, Jz) = (sin2 θ, 0, cos2 θ) and
rA = rB = cos θ in (49). Here

|θ〉 = exp[−i θ2σy]|0〉 = cos θ
2 |0〉+ sin θ

2 |1〉 (59)

is the state with the spin forming an angle θ with the
z axis in the x, z plane. The relevance of this state was
discussed in [33]. It represents, roughly, the state of a
spin pair in the definite parity ground state of a finite n
spin ferromagnetic type XY spin chain in a transverse
field for |B| < Bc, and the exact state of any pair at the
immediate vicinity of the factorizing field [38] (neglecting
small coherence terms ∝ cosn−2 θ).
This state is separable, i.e., it is a convex mixture of

product states [8], and the concurrence CAB accordingly
vanishes ∀ θ. Nonetheless, it has non-zero discord [33]
if θ ∈ (0, π/2). It will then have non-zero values of any
IBf in this interval, with IBf = IAf ∀ Sf due to the sym-
metry of the state. For θ = 0 it is obviously a pure
product state, while for θ = π/2 it is a classically cor-
related state, i.e., diagonal in a standard product basis,
implying IBf (θ) ≡ IBf (ρAB(θ)) = 0 for θ = 0 or θ = π/2
∀ Sf .
It can be expected that as θ increases, the least dis-

turbing measurement will change from z to x. In the
quadratic and cubic cases, the transition is sharp. We
obtain, according to Eqs. (53)–(56),

I2 = 1
2

{

sin4 θ θ < θc2
cos2 θ + cos4 θ θ > θc2

, (60)

I3 = 1
4

{

sin4 θ θ < θc3
cos2 θ + 3 cos4 θ θ > θc3

, (61)

where cos2 θc2 = 1/3 (θc2 ≈ 0.61π/2) and cos2 θc3 =

(
√
17 − 3)/4 (θc3 ≈ 0.64π/2), with the minimizing mea-

surement changing from z to x for θ > θci. These two
quantities exhibit then a cusp-like maximum at θ = θci,
i.e. slightly above π/4, as seen in Fig. 2.
On the other hand, for other entropies a smooth tran-

sition from z to the x direction can arise. For instance, in
the von Neumann case z is preferred exactly for θ ≤ π/4,
but x is minimum only for θ & 0.64π/2. In between, the
optimum measurement is obtained for an intermediate
angle γ, as determined by Eq. (50), which varies contin-
uously from 0 to π/2, as seen in Fig. 2. This leads to a
smooth maximum, located closer to π/4. In the case of
the quantum discord, the minimizing angle is γ = π/2 ∀
θ, exhibiting then a different behavior due to the effect
of the local term. In this case a relative entropy, rather
than a total entropy, is minimized.

0 π/4 π/2

Θ

0

0.2

0.4

I qB

I1
B

I2
B

I3
B

DB

0 π/4 π/2

Θ

0

π/4

π/2

Γ

I1
B

I2
B

I3
B

DB

FIG. 2. Top: The quantum correlation measures IBq (ρAB) in
the state (57), as a function of the angle θ for q = 1 (von
Neumann case), 2 and 3. DB denotes the quantum discord.
Bottom: The least disturbing measurement angle γ vs. θ for
the same cases depicted above. It is seen that γ exhibits a
sharp transition from 0 to π/2 (i.e., from z to the x axis) in
the quadratic (q = 2) and cubic (q = 3) cases, whereas in
the von Neumann case (q = 1) the transition is smooth. No
transition arises in the case of the quantum discord.

0 π/4 π/2
Θ

0

π/4

π/2

Γ

0 0.3 0.5 0.7 1 1.52 3

5 10

¥

FIG. 3. The least disturbing measurement angle γ vs. θ de-
termined by IBq (θ), for different values of q.

For the present state there is no least mixed state ρ′AB,
and the least disturbing measurement depends, therefore,
on the entropic function. In order to appreciate previous
results from a more general perspective, the behavior of
the minimizing angle for different q in the entropies (10)
is depicted in Fig. 3. The sharp transition z → x (i.e.,
0 → π/2) occurs for 2 ≤ q ≤ 3, indicating a special criti-
cal behavior at these two values. A smoothed transition
like that encountered in the von Neumann case arises for
1/2 < q < 2 and also q > 3, where γ varies continuously
from 0 to π/2 within some window of θ values, which
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narrows for q close to 2 or 3.
For 0 < q ≤ 1/2, the minimizing angle changes sharply

from 0 to an intermediate value γ ≈ θ, increasing then
almost linearly with θ (γ ≈ θ). This is due to the fact
that for low q, Sq(ρ

′
AB) is minimized when the lowest

eigenvalue of ρ′AB vanishes, and this occurs precisely for
γ = θ. On the other hand, for high q, Sq(ρ

′
AB) is min-

imized when the largest eigenvalue of ρ′AB is maximum,
and the latter is maximized for γ = 0 if θ ≤ θc ≈ 0.66π/2,
and for an intermediate γ if θ > θc, which varies contin-
uously from 0 to π/2 for θc < θ < π/2. Accordingly,
for high but finite q values, γ = 0 for θ . θc, increasing
then with θ and reaching π/2 at an increasingly higher
θ. Different disorder criteria lead then to different least
disturbing measurements in this case, in contrast with
the state (38).

IV. CONCLUSIONS

We have analyzed the determination of the minimum
information loss IBf associated with an unread local mea-
surement in a bipartite system, for a general entropy Sf .
Such quantity is a measure of the quantum correlations
lost in the local measurement, and reduces to the in-
formation deficit and the geometric discord when Sf is
chosen as the von Neumann and linear entropy respec-
tively. A general stationary condition was derived, to-
gether with its explicit form for an arbitrary mixed state
of two qubits. Explicit expressions for the cubic entropy

and the associated measure IB3 were in this case obtained,
which require, as in the quadratic case (geometric dis-
cord), just the eigenvalues of a 3× 3 matrix.
As application, we have first examined two-qubit

mixed states with maximally mixed marginals, where the
minimum information loss IBf for any entropy was shown
to be a simple function of the eigenvalues of ρAB. The
minimizing measurement is in this case universal. More-
over, in this case IB2 and IB3 were shown to be strict upper
bounds of the squared concurrence, which is the asso-
ciated entanglement monotone for both entropies. We
have also analyzed the case of X states, providing ex-
plicit expressions for IB2 and IB3 and showing that spin
measurements along the principal axes of the matrix J tJ
are universal stationary points of IBf for any Sf .
Finally, the special case of a mixture of aligned states

was examined in detail. Here the least disturbing lo-
cal measurement changes, for all measures Sf , from z
(bisector axis) to the x axis as the angle 2θ between
both directions changes from 0 to π, being then differ-
ent from that optimizing the original quantum discord
(which stays constant), although the type of transition
depends on the information measure employed. The least
disturbing measurement according to IBf is thus more
sensible to the strength of the correlation, and reflects
the “transition” experienced by the state. Application of
the present formalism to more complex systems is cur-
rently under investigation.
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