18,487 research outputs found

    The Mechanism of Expansion and the Volatility it created in Three Pheromone Gene Clusters in the Mouse (\u3ci\u3eMus musculus\u3c/i\u3e) Genome

    Get PDF
    Three families of proteinaceous pheromones have been described in the house mouse: androgen-binding proteins (ABPs), exocrine gland–secreting peptides (ESPs), and major urinary proteins (MUPs), each of which is thought to communicate different information. All three are encoded by large gene clusters in different regions of the mouse genome, clusters that have expanded dramatically during mouse evolutionary history. We report copy number variation among the most recently duplicated Abp genes, which suggests substantial volatility in this gene region. It appears that groups of these genes behave as low copy repeats (LCRs), duplicating as relatively large blocks of genes by nonallelic homologous recombination. An analysis of gene conversion suggested that it did not contribute to the very low or absent divergence among the paralogs duplicated in this way. We evaluated the ESP and MUP gene regions for signs of the LCR pattern but could find no compelling evidence for duplication of gene blocks of any significant size. Assessment of the entire Abp gene region with the Mouse Paralogy Browser supported the conclusion that substantial volatility has occurred there. This was especially evident when comparing strains with all or part of the Mus musculus musculus or Mus musculus castaneus Abp region. No particularly remarkable volatility was observed in the other two gene families, and we discuss the significance of this in light of the various roles proposed for the three families of mouse proteinaceous pheromones

    The Roles of Gene Duplication, Gene Conversion and Positive Selection in Rodent \u3ci\u3eEsp\u3c/i\u3e and \u3ci\u3eMup\u3c/i\u3e Pheromone Gene Families with Comparison to the \u3ci\u3eAbp\u3c/i\u3e Family

    Get PDF
    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining Ka/Ks for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with Ka/Ks \u3e1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication

    Pengaruh Corporate Social Responsibility terhadap Nilai Perusahaan pada Sektor Barang dan Konsumsi

    Full text link
    The objective of this resech was to find out whether or not Corporate Social Responsibility (CSR) had influence on the firm value, in which the CSR variable was measured based on the Gloal Reporting Initiative Index 3.1 standart, while firm value was measured by using Tobin's Q. The sample was taken form the observation of 124 companies in Consumer Goods Industry sector within 2009-2013. The result of this reserch showed that Corporate Social Responsibility had no significant influance on the firm value, while the other control variable, namely firm size had significant influence on the firm value. But market share and debt to equity ratio control variables had no impact on the firm value

    Sex Differences in Morbidity and Mortality

    Get PDF
    Women have worse self-rated health and more hospitalization episodes than men from early adolescence to late middle age, but are less likely to die at each age. We use 14 years of data from the U.S. National Health Interview Survey to examine this paradox. Our results indicate that the difference in self-assessed health between women and men can be entirely explained by differences in the distribution of the chronic conditions they face. Although on average women have worse self-rated health than men, women and men with the same chronic conditions have the same self-rated health. The results for hospital episodes are somewhat different. While the effect of poor health on hospital episodes is the same for men and women, men with respiratory cancer, cardiovascular disease, and bronchitis are more likely to experience hospital episodes than women who suffer from the same chronic conditions, implying that men may experience more severe forms of these conditions. The same is true for mortality. Although the effects of many chronic conditions on the probability of death are the same for women and men, men who report having cardiovascular disease and certain lung disorders are significantly more likely to die than women with these conditions. While some of the gender difference in mortality can be explained by differences in the distribution of chronic conditions, an equally large share can be attributed to the larger adverse effects of these conditions on male mortality. Is smoking the smoking gun? Conditions for which we find excess male hospitalizations and mortality are generally smoking-related.

    The Role of Retrotransposons in Gene Family Expansions: Insights from the Mouse \u3ci\u3eAbp\u3c/i\u3e Gene Family

    Get PDF
    Background: Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results: Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions: We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in the most recent duplication are the main contributions of our study

    Environment and sex ratios among alaska natives: An historical perspective

    Get PDF
    Human-environment interactions can affect the sex ratios of resource-dependent societies in a variety of ways. Historical and contemporary data on Alaska Native populations illustrate such effects. Some eighteenth and early nineteenth century observers noted an excess of females, which they attributed to high mortality among hunters. Population counts in the later nineteenth century and well into the twentieth found instead an excess of men in many communities. Female infanticide was credited as the explanation: since family survival depended upon hunting success, males were more valued. Although infanticide explanations for the excess of males have been widely believed, available demographic data point to something else: higher adult female mortality. Finally, in the postwar years, the importance of mortality differentials seems to have faded-and also changed direction. Female outmigration from villages accounts for much of the gender imbalance among Native populations today. Natural-resource development, particularly North Slope oil, indirectly drives this migration. In Alaska\u27s transcultural communities, the present gender imbalances raise issues of individual and cultural survival

    Critical random graphs : limiting constructions and distributional properties

    Get PDF
    We consider the Erdos-Renyi random graph G(n, p) inside the critical window, where p = 1/n + lambda n(-4/3) for some lambda is an element of R. We proved in Addario-Berry et al. [2009+] that considering the connected components of G(n, p) as a sequence of metric spaces with the graph distance rescaled by n(-1/3) and letting n -> infinity yields a non-trivial sequence of limit metric spaces C = (C-1, C-2,...). These limit metric spaces can be constructed from certain random real trees with vertex-identifications. For a single such metric space, we give here two equivalent constructions, both of which are in terms of more standard probabilistic objects. The first is a global construction using Dirichlet random variables and Aldous' Brownian continuum random tree. The second is a recursive construction from an inhomogeneous Poisson point process on R+. These constructions allow us to characterize the distributions of the masses and lengths in the constituent parts of a limit component when it is decomposed according to its cycle structure. In particular, this strengthens results of Luczak et al. [1994] by providing precise distributional convergence for the lengths of paths between kernel vertices and the length of a shortest cycle, within any fixed limit component

    Shear Force Fiber Spinning: Process Parameter and Polymer Solution Property Considerations

    Get PDF
    For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary as the fiber spacing achieved using electrospinning with the rotating drum was ~10 microns while fiber spacing achieved using shear force fiber spinning was ~250 microns. To expand to additional polymer systems, we use polymer entanglement and capillary number. Solution properties that favor large capillary numbers (\u3e50) prevent droplet breakup to facilitate fiber formation. Draw-down ratio was useful for determining appropriate process conditions (flow rate, rotational speed of the collector) to achieve continuous formation of fibers. These rules of thumb for considering the polymer solution properties and process parameters are expected to expand use of this platform for creating hierarchical structures of multiple fiber layers for cell scaffolds and additional applications
    corecore