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Abstract

We consider the Erdős–Rényi random graph G(n, p) inside the critical window, where p =
1/n + λn−4/3 for some λ ∈ R. We proved in [1] that considering the connected components
of G(n, p) as a sequence of metric spaces with the graph distance rescaled by n−1/3 and letting
n→∞ yields a non-trivial sequence of limit metric spaces C = (C1,C2, . . . ). These limit metric
spaces can be constructed from certain random real trees with vertex-identifications. For a single
such metric space, we give here two equivalent constructions, both of which are in terms of more
standard probabilistic objects. The first is a global construction using Dirichlet random variables
and Aldous’ Brownian continuum random tree. The second is a recursive construction from an
inhomogeneous Poisson point process on R+. These constructions allow us to characterize the
distributions of the masses and lengths in the constituent parts of a limit component when it
is decomposed according to its cycle structure. In particular, this strengthens results of Łuczak
et al. [29] by providing precise distributional convergence for the lengths of paths between ker-
nel vertices and the length of a shortest cycle, within any fixed limit component.
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1 Introduction

The Erdős–Rényi random graph G(n, p) is the random graph on vertex set {1, 2, . . . , n} in which each
of the

�n
2

�

possible edges is present independently of the others with probability p. In the 50 years
since its introduction [20], this simple model has given rise to a very rich body of mathematics.
(See the books [14, 26] for a small sample of this corpus.) In a previous paper [1], we considered
the rescaled global structure of G(n, p) for p in the critical window – that is, where p = 1/n+λn−4/3

for some λ ∈ R – when individual components are viewed as metric spaces with the usual graph
distance. (See [1] for a discussion of the significance of the random graph phase transition and
the critical window.) The subject of the present paper is the asymptotic behavior of individual
components of G(n, p), again viewed as metric spaces, when p is in the critical window.

Let C n
1 ,C n

2 , . . . be the connected components of G(n, p) listed in decreasing order of size, with ties
broken arbitrarily. Write C n = (C n

1 ,C n
2 , . . .) and write n−1/3C n to mean the sequence of compo-

nents viewed as metric spaces with the graph distance in each multiplied by n−1/3. Let dGH be the
Gromov–Hausdorff distance between two compact metric spaces (see [1] for a definition).

Theorem 1 ([1]). There exists a random sequence C of compact metric spaces such that as n→∞,

n−1/3C n d→C ,

where the convergence is in distribution in the distance d specified by

d(A ,B) =

 

∞
∑

i=1

dGH(Ai ,Bi)
4

!1/4

.

We refer to the individual metric spaces in the sequence C as the components of C . The proof of
Theorem 1 relies on a decomposition of any connected labeled graph G into two parts: a “canoni-
cal” spanning tree (see [1] for a precise definition of this tree), and a collection of additional edges
which we call surplus edges. Correspondingly, the limiting sequence of metric spaces has a surpris-
ingly simple description as a collection of random real trees (given below) in which certain pairs
of vertices have been identified (vertex-identification being the natural analog of adding a surplus
edge, since edge-lengths are converging to 0 in the limit).

In this paper, we consider the structure of the individual components of the limit C in greater detail.
In the limit, these components have a scaling property which means that, in order to describe the
distributional structure of a component, only the number of vertex identifications (which we also call
the surplus) matters, and not the total mass of the tree in which the identifications take place. The
major contribution of this paper is the description and justification of two construction procedures
for building the components of C directly, conditional on their size and surplus. The importance of
these new procedures is that instead of relying on a decomposition of a component into a spanning
tree and surplus, they rely on a decomposition according to the cycle structure, which from many
points of view is much more natural.

The procedure we describe first is based on glueing randomly rescaled Brownian CRT’s along the
edges of a random kernel (see Section 2.2 for the definition of a kernel). This procedure is more
combinatorial, and implicitly underlying it is a novel finite construction of a component of G(n, p),
by first choosing a random kernel and then random doubly-rooted trees which replace the edges of
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the kernel. (However, we do not spell out the details of the finite construction since it does not lead
to any further results.) It is this procedure that yields the strengthening of the results of Łuczak,
Pittel, and Wierman [29].

The second procedure contains Aldous’ stick-breaking inhomogeneous Poisson process construction
of the Brownian CRT as a special case. Aldous’ construction, first described in [2], has seen nu-
merous extensions and applications, among which the papers of Aldous [5], Aldous, Miermont, and
Pitman [8], Peres and Revelle [30], Schweinsberg [34] are notable. In particular, in the same way
that the Brownian CRT arises as the limit of the uniform spanning tree in of Zd for d ≥ 4 (proved
in [34]), we expect our generalization to arise as the scaling limit of the components of critical
percolation in Zd or the d-dimensional torus, for large d.

Before we move on to the precise description of the constructions, we introduce them informally
and discuss their relationship with various facts about random graphs and the Brownian continuum
random tree.

1.1 Overview of the results

A key object in this paper is Aldous’ Brownian continuum random tree (CRT) [2–4]. In Section 2, we
will give a full definition of the Brownian CRT in the context of real trees coded by excursions. For the
moment, however, we will simply note that the Brownian CRT is encoded by a standard Brownian
excursion, and give a more readily understood definition using a construction given in [3].

STICK-BREAKING CONSTRUCTION OF THE BROWNIAN CRT. Consider an inhomogeneous Poisson process
on R+ with instantaneous rate t at t ∈ R+. Let J1, J2, . . . be its inter-jump times, in the order
they occur (J1 being measured from 0). Now construct a tree as follows. First take a (closed)
line-segment of length J1. Then attach another line-segment of length J2 to a uniform position on
the first line-segment. Attach subsequent line-segments at uniform positions on the whole of the
structure already created. Finally, take the closure of the object obtained.

The canonical spanning tree appearing in the definition of a component of C is not the Brownian
CRT, except when the surplus is 0; in general, its distribution is defined instead as a modification
(via a change of measure) of the distribution of the Brownian CRT which favors trees encoded by
excursions with a large area (see Section 2 for details). We refer to such a continuum random tree as
a tilted tree. One of the main points of the present work is to establish strong similarity relationships
between tilted trees and the Brownian CRT which go far beyond the change of measure in the
definition.

Our first construction focuses on a combinatorial decomposition of a connected graph into its cycle
structure (kernel) and the collection of trees obtained by breaking down the component at the
vertices of the kernel. In the case of interest here, the trees are randomly rescaled instances of
Aldous’ Brownian CRT. This is the first direct link between the components of C having strictly
positive surplus and the Brownian CRT.

As we already mentioned, our second construction extends the stick-breaking construction of the
Brownian CRT given above. We prove that the tilted tree corresponding to a connected component
of C with a fixed number of surplus edges can be built in a similar way: the difference consists in a
bias in the lengths of the first few intervals in the process, but the rate of the Poisson point process
used to split the remainder of R+ remains unchanged. It is important to note that an arbitrary bias
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in the first lengths does not, in general, give a consistent construction: if the distribution is not
exactly right, then the initial, biased lengths will appear too short or too long in comparison to the
intervals created by the Poisson process. Indeed, it was not a priori obvious to the authors that such a
distribution must necessarily exist. The consistency of this construction is far from obvious and a fair
part of this paper is devoted to proving it. In particular, the results we obtain for the combinatorial
construction (kernel/trees) identify the correct distributions for the first lengths. Note in passing
that the construction shows that the change of measure in the definition of tilted trees is entirely
accounted for by biasing a (random) number of paths in the tree.

The first few lengths mentioned above are the distances between vertices of the kernel of the com-
ponent. One can then see the stick-breaking construction as jointly building the trees: each interval
chooses a partially-formed tree with probability proportional to the sum of its lengths (the current
mass), and then chooses a uniformly random point of attachment in that tree. We show that one can
analyze this procedure precisely via a continuous urn process where the bins are the partial trees,
each starting initially with one of the first lengths mentioned above. The biased distribution of the
initial lengths in the bins ensures that the process builds trees in the combinatorial construction
which are not only Brownian CRT’s but also have the correct joint distribution of masses. The proof
relies on a decoupling argument related to de Finetti’s theorem [9, 16].

1.2 Plan of the paper

The two constructions we have just informally introduced are discussed precisely in Section 2. Along
the way, Section 2 also introduces many of the key concepts and definitions of the paper. The
distributional results are stated in Section 3. The remainder of the document is devoted to proofs.
In Section 4 we derive the distributions of the lengths in a component of C between vertices of the
kernel. The stick-breaking construction of a component of C is then justified in Section 5. Finally,
our results about the distributions of masses and lengths of the collection of trees obtained when
breaking down the cycle structure at its vertices are proved in Section 6.

2 Two constructions

Suppose that Gp
m is a (connected) component of G(n, p) conditioned to have size (number of ver-

tices) m ≤ n. Theorem 1 entails that Gp
m, with mn−2/3 → σ and pn → 1 as n → ∞ and distances

rescaled by n−1/3, converges in distribution to some limiting metric space, in the Gromov–Hausdorff
sense. (We shall see that the scaling property mentioned above means in particular that it will
suffice to consider the case σ = 1.) We refer to this limiting metric space as “a component of C ,
conditioned to have total size σ”. From the description as a finite graph limit, it is clear that this
distribution should not depend upon where in the sequence C the component appears, a fact we
can also obtain by direct consideration of the limiting object (see below).

2.1 The viewpoint of Theorem 1: vertex identifications within a tilted tree.

In this section, we summarize the perspective taken in [1] on the structure of a component of C
conditioned to have total size σ, as we will need several of the same concepts in this paper. Our
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presentation in this section owes much to the excellent survey paper of Le Gall [28]. A real tree is a
compact metric space (T , d) such that for all x , y ∈ T ,

• there exists a unique geodesic from x to y i.e. there exists a unique isometry fx ,y :
[0, d(x , y)] → T such that fx ,y(0) = x and fx ,y(d(x , y)) = y . The image of fx ,y is called
¹x , yº;

• the only non-self-intersecting path from x to y is ¹x , yº i.e. if q : [0, 1] → T is continuous
and injective and such that q(0) = x and q(1) = y then q([0, 1]) = ¹x , yº.

In practice, the picture to have in mind is of a collection of line-segments joined together to make a
tree shape, with the caveat that there is nothing in the definition which prevents “exotic behavior”
such as infinitary branch-points or uncountable numbers of leaves (i.e. elements of T of degree
1). Real trees encoded by excursions are the building blocks of the metric spaces with which we
will deal in this paper, and we now explain them in detail. By an excursion, we mean a continuous
function h : [0,∞)→ R+ such that h(0) = 0, there exists σ <∞ such that h(x) = 0 for x > σ and
h(x)> 0 for x ∈ (0,σ). Define a distance dh on [0,∞) via

dh(x , y) = h(x) + h(y)− 2 inf
x∧y≤z≤x∨y

h(z)

and use it to define an equivalence relation: take x ∼ y if dh(x , y) = 0. Then the quotient space
Th := [0,σ]/∼ endowed with the distance dh turns out to be a real tree. We will always think of Th
as being rooted at the equivalence class of 0. When h is random, we call Th a random real tree. The
excursion h is often referred to as the height process of the tree Th. We note that Th comes equipped
with a natural mass measure, which is the measure induced on Th from Lebesgue measure on [0,σ].
By a real tree of mass or size σ, we mean a real tree built from an excursion of length σ.

Aldous’ Brownian continuum random tree (CRT) [2–4] is the real tree obtained by the above proce-
dure when we take h= 2e, where e= (e(x), 0≤ x ≤ 1) is a standard Brownian excursion.

The limit C = (C1,C2, . . .) is a sequence of compact metric spaces constructed as follows. First,
take a standard Brownian motion (W (t), t ≥ 0) and use it to define the processes (Wλ(t), t ≥ 0)
and (Bλ(t), t ≥ 0) via

Wλ(t) =W (t) +λt −
t2

2
, and Bλ(t) =Wλ(t)− min

0≤s≤t
Wλ(s).

Now take a Poisson point process in R+ × R+ with intensity 1
2
L2, where L2 is Lebesgue measure

in the plane. The excursions of 2Bλ away from zero correspond to the limiting components of C :
each excursion encodes a random real tree which “spans” its component, and the Poisson points
which fall under the process (and, in particular, under specific excursions) tell us where to make
vertex-identifications in these trees in order to obtain the components themselves. We next explain
this vertex identification rule in detail.

For a given excursion h, let Ah = {(x , y) : 0≤ x ≤ σ, 0≤ y ≤ h(x)} be the set of points under h and
above the x-axis. Let

`(ξ) = `((x , y)) = sup{x ′ ≤ x : y = h(x ′)} and r(ξ) = r((x , y)) = inf{x ′ ≥ x : y = h(x ′)}
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be the points of [0,σ] nearest to x for which h(`(ξ)) = h(r(ξ)) = y (see Figure 1). It is now
straightforward to describe how the points of a finite pointset Q ⊆ Ah can be used to make vertex-
identifications: for ξ ∈Q, we simply identify the equivalence classes [x] and [r(x)] in Th. (It should
always be clear that the points we are dealing with in the metric spaces are equivalence classes, and
we hereafter drop the square brackets.) We write g(h,Q) for the resulting “glued” metric space; the
tree metric is altered in the obvious way to accommodate the vertex identifications.

To obtain the metric spaces in the sequence C from 2Bλ, we simply make the vertex identifications
induced by the points of the Poisson point process in R+ × R+ which fall below 2Bλ, and then
rearrange the whole sequence in decreasing order of size. The reader may be somewhat puzzled by
the fact that we multiply the process Bλ by 2 and take a Poisson point process of rate 1

2
. It would

seem more intuitively natural to use the excursions of Bλ and a Poisson point process of unit rate.
However, the lengths in the resulting metric spaces would then be too small by a factor of 2. This
is intimately related to the appearance of the factor 2 in the height process of the Brownian CRT.
Further discussion is outside the purview of this paper, but may be found in [1].

x r(x)

ξ

Figure 1: A finite excursion h on [0, 1] coding a compact real tree Th. Horizontal lines connect points of the
excursion which form equivalence classes in the tree. The point ξ = (x , y) yields the identification of the
equivalence classes [x] and [r(x)], which are represented by the horizontal dashed lines.

Above, we have described a way of constructing the sequence of metric spaces C . In order to see
what this implies about a single component of C , we must first explain the scaling property of
the components Ck mentioned above. First, consider the excursions above 0 of the process Bλ. An
excursion theory calculation (see [1, 6]) shows that, conditional on their lengths, the distributions of
these excursions do not depend on their starting points. Write ẽ(σ) for such an excursion conditioned
to have length σ; in the case σ = 1, we will simply write ẽ. The distribution of ẽ(σ) is most easily
described via a change of measure with respect to the distribution of a Brownian excursion e(σ)

conditioned to have length σ: for any test function f ,

E[ f (ẽ(σ))] =
E
h

f (e(σ))exp
�

∫ σ

0
e(σ)(x)d x

�i

E
h

exp
�

∫ σ

0
e(σ)(x)d x

�i . (1)

We refer to ẽ(σ) as a tilted excursion and to the tree encoded by 2ẽ(σ) as a tilted tree. The scaling
property derives from the fact that a Brownian excursion e(σ) may be obtained from a standard
Brownian excursion e by the transformation e(σ)( · ) =

p
σe( ·/σ) (Brownian scaling). Given ẽ(σ),

write P for the points of a homogeneous Poisson point process of rate 1
2

in the plane which fall
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under the excursion 2ẽ(σ). Note that as a consequence of the homogeneity of P , conditional on
ẽ(σ), the number of points |P | has a Poisson distribution with mean

∫ σ

0
ẽ(σ)(x)d x .

Let e(σ)( · ) =
p
σe( ·/σ) as above. Then for any test function f , by the tower law for conditional

expectations we have

E
�

f (ẽ(σ)) | |P |= k
�

=
E
�

f (ẽ(σ))1{|P |=k}
�

P (|P |= k)

=
E
�

E
�

f (ẽ(σ))1{|P |=k} | ẽ(σ)
��

E
�

P
�

|P |= k | ẽ(σ)
��

=
E
h

f (ẽ(σ)) · 1
k!

�

∫ σ

0
ẽ(σ)(u)du

�k exp
�

−
∫ σ

0
ẽ(σ)(u)du

�

i

E
h

1
k!

�

∫ σ

0
ẽ(u)du

�k exp
�

−
∫ σ

0
ẽ(σ)(u)du

�

i

=
E
h

f (e(σ)) ·
�

∫ σ

0
e(σ)(u)du

�k
i

E
h

�

∫ σ

0
e(σ)(u)du

�k
i

=
E
h

f (
p
σe( ·/σ))

�

∫ 1

0
e(u)du

�k
i

E
h

�

∫ 1

0
e(u)du

�k
i .

Thus, conditional on |P |= k, the behavior of the tilted excursion of length σmay be recovered from
that of a tilted excursion of length 1 by a simple rescaling. Throughout the paper, in all calculations
that are conditional on the number of Poisson points |P |, we will take σ = 1 to simplify notation,
and appeal to the preceding calculation to recover the behavior for other values of σ.

Finally, suppose that the excursions of Bλ have ordered lengths Z1 ≥ Z2 ≥ . . . ≥ 0. Then condi-
tional on their sizes Z1, Z2, . . . respectively, the metric spaces C1,C2, . . . are independent and Ck
is distributed as g(2ẽ(Zk),P ), k ≥ 1. It follows that one may construct an object distributed as a
component of C conditioned to have size σ as follows.

VERTEX IDENTIFICATIONS WITHIN A TILTED TREE

1. Sample a tilted excursion ẽ(σ).

2. Sample a set P containing a Poisson
�

∫ σ

0
ẽ(σ)(x)d x

�

number of points uni-

form in the area under 2ẽ(σ).

3. Output g(2ẽ(σ),P ).

The validity of this method is immediate from Theorem 1 and from (1).

2.2 Randomly rescaled Brownian CRT’s, glued along the edges of a random kernel.

Before explaining our first construction procedure, we introduce some essential terminology. Our
description relies first on a “top-down” decomposition of a graph into its cycle structure along with
pendant trees, and second on the reverse “bottom-up” reconstruction of a component from a prop-
erly sampled cycle structure and pendant trees.
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Graphs and their cycle structure. The number of surplus edges, or simply surplus, of a connected
labeled graph G = (V, E) is defined to be s = s(G) = |E|− |V |+1. In particular, trees have surplus 0.
We say that the connected graph G is unicylic if s = 1, and complex if s ≥ 2. Define the core
(sometimes called the 2-core) C = C(G) to be the maximum induced subgraph of G which has
minimum degree two (so that, in particular, if G is a tree then C is empty). Clearly the graph
induced by G on the set of vertices V \ V (C) is a forest. So if u ∈ V \ V (C), then there is a unique
shortest path in G from u to some v ∈ V (C), and we denote this v by c(u). We extend the function
c( · ) to the rest of V by setting c(v) = v for v ∈ V (C).
We next define the kernel K = K(G) to be the multigraph obtained from C(G) by replacing all paths
whose internal vertices all have degree two in C and whose endpoints have degree at least three in
C by a single edge (see e.g. [26]). If the surplus s is at most 1, we agree that the kernel is empty;
otherwise the kernel has minimum degree three and precisely s − 1 more edges than vertices. It
follows that the kernel always has at most 2s vertices and at most 3s edges. We write mult(e) for the
number of copies of an edge e in K . We now define κ(v) to be “the closest bit of K to v”, whether
that bit happens to be an edge or a vertex. Formally, if v ∈ V (K) we set κ(v) = v. If v ∈ V (C)\V (K)
then v lies in a path in G that was contracted to become some copy ek of an edge e in K; we set
κ(v) = ek. If v ∈ V (G) \ V (C) then we set κ(v) = κ(c(v)). In this last case, κ(v) may be an edge
or a vertex, depending on whether or not c(v) is in V (K). The graphs induced by G on the sets
κ−1(v) or κ−1(ek) for a vertex v or an edge ek of the kernel K are trees; we call them vertex trees
and edge trees, respectively, and denote them T (v) and T (ek). It will always be clear from context
to which graph they correspond. In each copy ek of an edge uv, we distinguish in T (ek) the vertices
that are adjacent to u and v on the unique path from u to v in the core C(G), and thus view T (ek)
as doubly-rooted.

Before we define the corresponding notions of core and kernel for the limit of a connected graph,
it is instructive to discuss the description of a finite connected graph G given in [1] (and alluded to
just after Theorem 1), and to see how the core appears in that picture. Let G = (V, E) be connected
and with ordered vertex set; without loss of generality, we may suppose that that V = [m] for some
m ≥ 1. Let T = T (G) be the so-called depth-first tree. This is a spanning tree of the component
which is derived using a certain “canonical” version of depth-first search. (Since the exact nature of
that procedure is not important here, we refer the interested reader to [1].) Let E∗ = E\E(T ) be the
set of surplus edges which must be added to T in order to obtain G. Let V ∗ be the set of endpoints
of edges in E∗, and let TC(G) be the union of all shortest paths in T (G) between elements of V ∗.
Then the core C(G) is precisely TC(G), together with all edges in E∗, and TC(G) = T (C(G)).

The cycle structure of sparse continuous metric spaces. Now consider a real tree Th derived from
an excursion h, along with a finite pointset Q ⊆ Ah which specifies certain vertex-identifications, as
described in the previous section. Let Qx = {x : ξ = (x , y) ∈ Q} and let Qr = {r(x) : ξ = (x , y) ∈
Q}, both viewed as sets of points of Th. We let TC(h,Q) be the union of all shortest paths in Th
between vertices in the setQx ∪Qr . Then TC(h,Q) is a subtree of Th, with at most 2|Q| leaves (this
is essentially the pre-core of Section 4.2). We define the core C(h,Q) of g(h,Q) to be the metric
space obtained from TC(h,Q) by identifying x and r(x) for each ξ = (x , y) ∈ Q. We obtain the
kernel K(h,Q) from the core C(h,Q) by replacing each maximal path in C(h,Q) for which all points
but the endpoints have degree two by an edge. For an edge uv of K(h,Q), we write π(uv) for the
path in C(h,Q) corresponding to uv, and |π(uv)| for its length.

For each x , let c(x) be the nearest point of TC(h,Q) to x in Th. In other words, c(x) is the point
of TC(h,Q) which minimizes dh(x , c(x)). The nearest bit κ(x) of K(h,Q) to x is then defined in an
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analogous way to the definition for finite graphs. For a vertex v of K(h,Q), we define the vertex tree
T (v) to be the subgraph of g(h,Q) induced by the points in κ−1(v) = {x : c(x) = v} and the mass
µ(v) as the Lebesgue measure of κ−1(v). Similarly, for an edge uv of the kernel K(h,Q) we define
the edge tree T (uv) to be the tree induced by κ−1(uv) = {x : c(x) ∈ π(uv), c(x) 6= u, c(x) 6= v}∪{u, v}
and write µ(uv) for the Lebesgue measure of κ−1(uv). The two points u and v are considered as
distinguished in T (uv), and so we again view T (uv) as doubly-rooted. It is easily seen that these
sets are countable unions of intervals, so their measures are well-defined. Figures 2 and 3 illustrate
the above definitions.

a
b c

d

A

B

C

D

1

2

3

Figure 2: An excursion h and the reduced tree which is the subtree TR(h,Q) of Th spanned by the root and the
leaves A, B, C , D corresponding to the pointset Q = {a, b, c, d} (which has size k = 4). The tree TR(h,Q) is a
combinatorial tree with edge-lengths. It will be important in Section 4 below. It has 2k vertices: the root, the
leaves and the branch-points 1,2, 3. The dashed lines have zero length.

A

B

C

D

a

b c
d

1 3

A

B

C

D

a

b c
d

1 3

a
1

b d

3c

Figure 3: From left to right: the tree TC(h,Q) from the excursion and pointset of Figure 2, the corresponding
kernel K(h,Q) and core C(h,Q). The dashed lines indicate vertex identifications.

Sampling a limit connected component. There are two key facts for the first construction pro-
cedure. The first is that, for a random metric space g(2ẽ,P ) as above, conditioned on its mass,
an edge tree T (uv) is distributed as a Brownian CRT of mass µ(uv) and the vertex trees are al-
most surely empty. The second is that the kernel K(2ẽ,P ) is almost surely 3-regular (and so has
2(|P | − 1) vertices and 3(|P | − 1) edges). Furthermore, for any 3-regular K with t loops,

P (K(2ẽ,P ) = K | |P |)∝
�

2t
∏

e∈E(K)

mult(e)!

�−1

. (2)

(The fact that any reasonable definition of a limit kernel must be 3-regular is obvious from earlier
results – see [25, Theorem 7], [29, Theorem 4], and [26, Theorems 5.15 and 5.21]. Also, (2) is the
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limit version of a special case of [25, Theorem 7 and (1.1)], and is alluded to in [26], page 128,
and so is also unsurprising.) These two facts, together with some additional arguments, will justify
the validity of our first procedure for building a component of C conditioned to have size σ, which
we now describe.

Let us condition on |P | = k. As explained before, it then suffices to describe the construction of a
component of standard mass σ = 1.

PROCEDURE 1: RANDOMLY RESCALED BROWNIAN CRT’S

• If k = 0 then let the component simply be a Brownian CRT of total mass 1.

• If k = 1 then let (X1, X2) be a Dirichlet(1
2
, 1

2
) random vector, let T1,T2 be

independent Brownian CRT’s of sizes X1 and X2, and identify the root of T1
with a uniform leaf of T1 and with the root of T2, to make a “lollipop” shape.

• If k ≥ 2 then let K be a random 3-regular graph with 2(k− 1) vertices chosen
according to the probability measure in (2), above.

1. Order the edges of K arbitrarily as e1, . . . , e3(k−1), with ei = ui vi .

2. Let (X1, . . . , X3(k−1)) be a Dirichlet(1
2
, . . . , 1

2
) random vector (see Section

3.1 for a definition).

3. Let T1, . . . ,T3(k−1) be independent Brownian CRT’s, with tree Ti having
mass X i , and for each i let ri and si be the root and a uniform leaf of Ti .

4. Form the component by replacing edge ui vi with tree Ti , identifying ri
with ui and si with vi , for i = 1, . . . , 3(k− 1).

In this description, as in the next, the cases k = 0 and k = 1 seem inherently different from the
cases k ≥ 2. In particular, the lollipop shape in the case k = 1 is a kind of “rooted core” that will
arise again below. For this construction technique, the use of a rooted core seems to be inevitable
as our methods require us to work with doubly rooted trees. Also, as can be seen from the above
description, doubly rooted trees are natural objects in the context of a kernel. However, they seem
more artificial for graphs whose kernel is empty. Finally, we shall see that the use of a rooted core
also seems necessary for the second construction technique in the case k = 1, a fact which is more
mysterious to the authors.

An aside: the forest floor picture. It is perhaps interesting to pause in order to discuss a rather
different perspective on real trees with vertex identifications. Suppose first that T is a Brownian
CRT. Then the path from the root to a uniformly-chosen leaf has a Rayleigh distribution [3] (see
Section 3.1 for a definition of the Rayleigh distribution). This also the distribution of the local time at
0 for a standard Brownian bridge. There is a beautiful correspondence between reflecting Brownian
bridge and Brownian excursion given by Bertoin and Pitman [12] (also discussed in Aldous and
Pitman [7]), which explains the connection.

Let B be a standard reflecting Brownian bridge. Let L be the local time at 0 of B, defined by

Lt = lim
ε→0

1

2ε

∫ t

0

1{Bs<ε}ds.
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Let U = sup{t ≤ 1 : Lt =
1
2

L1} and let

Kt =

(

Lt for 0≤ t ≤ U

L1− Lt for U ≤ t ≤ 1.

Theorem 2 (Bertoin and Pitman [12]). The random variable U is uniformly distributed on [0,1].
Moreover, X := K + B is a standard Brownian excursion, independent of U. Furthermore,

Kt =

(

mint≤s≤U Xs for 0≤ t ≤ U

minU≤s≤t Xs for U ≤ t ≤ 1.

In particular, B can be recovered from X and U.

So we can think of T with its root and uniformly-chosen leaf as being derived from X and U (U
tells us which leaf we select). Now imagine the vertices along the path from root to leaf as a “forest
floor", with little CRT’s rooted along its length. The theorem tells us that this is properly coded by
a reflecting Brownian bridge. Distances above the forest floor in the subtrees are coded by the sub-
excursions above 0 of the reflecting bridge; distances along the forest floor are measured in terms
of its local time at 0. This perspective seems natural in the context of the doubly-rooted randomly
rescaled CRT’s that appear in our second limiting picture.

There seems to us to be a (so far non-rigorous) connection between this perspective and another
technique that has been used for studying random graphs with fixed surplus or with a fixed kernel.
This technique is to first condition on the core, and then examine the trees that hang off the core.
It seems likely that one could directly prove that some form of depth- or breadth-first random walk
“along the trees of a core edge” converges to reflected Brownian motion. In the barely supercritical
case (i.e. in G(n, p) when p = (1+ ε(n))/n and n1/3ε(n) → ∞ but ε(n) = o(n−1/4)), Ding, Kim,
Lubetzky, and Peres [17] have shown that the “edge trees” of the largest component of G(n, p) may
essentially be generated by the following procedure: start from a path of length given by a geometric
with parameter ε, then attach to each vertex an independent Galton–Watson tree with Poisson(1−ε)
progeny. (We refer the reader to the original paper for a more precise formulation.) The formulation
of an analogous result that holds within the critical window seems to us a promising route to such a
convergence to reflected Brownian motion.

We now turn to the second of our constructions for a limiting component conditioned on its size.

2.3 A stick-breaking construction, run from a random core.

One of the beguiling features of the Brownian CRT is that it can be constructed in so many dif-
ferent ways. Here, we will focus on the stick-breaking construction discussed in the introduction.
Aldous [4] proves that the tree-shape and 2n− 1 branch-lengths created by running this procedure
for n steps have the same distribution as the tree-shape and 2n− 1 branch-lengths of the subtree
of the Brownian CRT spanned by n uniform points and the root. This is the notion of “random
finite-dimensional distributions” (f.d.d.’s) for continuum random trees. The sequence of these ran-
dom f.d.d.’s specifies the distribution of the CRT [4]. Let An be the real tree obtained by running
the above procedure for n steps (viewed as a metric space). We next prove that An converges to
the Brownian CRT. This theorem is not new; it simply re-expresses the result of Aldous [4] in the
Gromov–Hausdorff metric. We include a proof for completeness.
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Theorem 3. As n→∞, An converges in distribution to the Brownian CRT in the Gromov–Hausdorff
distance dGH.

Proof. Label the leaves of the treeAn by the index of their time of addition (so the leaf added at time
J1 has label 1, and so on). With this leaf-labeling,An becomes an ordered tree: the first child of an
internal node is the one containing the smallest labeled leaf. Let fn be the ordered contour process
of An, that is the function (excursion) fn : [0, 1]→ [0,∞) obtained by recording the distance from
the root when traveling along the edges of the tree at constant speed, so that each edge is traversed
exactly twice, the excursion returns to zero at time 1, and the order of traversal of vertices respects
the order of the tree. (See [4] for rigorous details, and [28] for further explanation.) Then by [4],
Theorem 20 and Corollary 22 and Skorohod’s representation theorem, there exists a probability
space on which ‖ fn−2e‖∞→ 0 almost surely as n→∞, where e is a standard Brownian excursion.
But 2e is the contour process of the Brownian CRT, and by [28], Lemma 2.4, convergence of contour
processes in the ‖ · ‖∞ metric implies Gromov–Hausdorff convergence of compact real trees, so An
converges to the Brownian CRT as claimed.

We will extend the stick-breaking construction to our random real trees with vertex-identifica-tions.
The technical details can be found in Section 5 but we will summarize our results here. In the
following, let U[0, 1] denote the uniform distribution on [0, 1].

PROCEDURE 2: A STICK-BREAKING CONSTRUCTION

First construct a graph with edge-lengths on which to build the component:

• CASE k = 0. Let Γ = 0 and start the construction from a single point.

• CASE k = 1. Sample Γ ∼ Gamma(3
2
, 1

2
) and U ∼ U[0,1] independently. Take

two line-segments of lengths
p
ΓU and

p
Γ(1− U). Identify the two ends of

the first line-segment and one end of the second.

• CASE k ≥ 2. Let m= 3k−3 and sample a kernel K according to the distribution
(2). Sample Γ ∼ Gamma(m+1

2
, 1

2
) and (Y1, Y2, . . . , Ym) ∼ Dirichlet(1,1, . . . , 1)

independently of each other and the kernel. Label the edges of K by
{1, 2, . . . , m} arbitrarily and attach a line-segment of length

p
ΓYi in the place

of edge i, 1≤ i ≤ m.

Now run an inhomogeneous Poisson process of rate t at time t, conditioned to have
its first point at

p
Γ. For each subsequent inter-jump time Ji , i ≥ 2, attach a line-

segment of length Ji to a uniformly-chosen point on the object constructed so far.
Finally, take the closure of the object obtained.

The definitions of the less common distributions used in the procedure appear in Section 3.1.

Theorem 4. Procedure 2 generates a component with the same distruction as g(2ẽ,P ) conditioned to
have |P |= k ≥ 1.

This theorem implicitly contains information about the total length of the core of g(2ẽ,P ): re-
markably, conditional upon |P |, the total length of the core has precisely the right distribution from
which to “start” the inhomogeneous Poisson process, and our second construction hinges upon this
fact.
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Our stick-breaking process can also be seen as a continuous urn model, with the m partially-
constructed edge trees corresponding to the balls of m different colors in the urn, the probabil-
ity of adding to a particular edge tree being proportional to the total length of its line segments.
It is convenient to analyze the behavior of this continuous urn model using a discrete one. Let
N1(n), N2(n), . . . , Nm(n) be the number of balls at step n of Pólya’s urn model started with with one
ball of each color, and evolving in such a way that every ball picked is returned to the urn along
with two extra balls of the same color [19]. Then N1(0) = N2(0) = · · ·= Nm(0) = 1, and the vector

�

N1(n)
m+ 2n

, . . . ,
Nm(n)
m+ 2n

�

converges almost surely to a limit which has distribution Dirichlet(1
2
, . . . , 1

2
) (again, see Section 3.1

for the definition of this distribution) [22, Section VII.4], [10, Chapter V, Section 9]. This is also
the distribution of the proportions of total mass in each of the edge trees of the component, which
is not a coincidence. We will see that the stick-breaking process can be viewed as the above Pólya’s
urn model performed on the coordinates of the random vector which keeps track of the proportion
of the total mass in each of the edge trees as the process evolves.

In closing this section, it is worth noting that the above construction techniques contain a strong
dose of both probability and combinatorics. To wit: the stick-breaking procedure is probabilistic
(but, given the links with urn models, certainly has a combinatorial “flavor”); the choice of a random
kernel conditional on its surplus seems entirely combinatorial (but can possibly also be derived from
the probabilistic Lemma 10, below); the fact that the edge trees are randomly rescaled CRT’s can
be derived via either a combinatorial or a probabilistic approach (we have taken a probabilistic
approach in this paper).

3 Distributional results

3.1 Gamma and Dirichlet distributions

Before moving on to state our distributional results, we need to introduce some relevant notions
about Gamma and Dirichlet distributions. Suppose that α,γ > 0. We say that a random variable has
a Gamma(α,θ) distribution if its density function on [0,∞) is given by

θαxα−1e−θ x

Γ(α)
, where Γ(α) =

∫ ∞

0

sα−1e−sds.

The Gamma(1,θ) distribution is the same as the exponential distribution with parameter θ , denoted
Exp(θ). Suppose that a, b > 0. We say that a random variable has a Beta(a, b) distribution if it has
density

Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1

on [0,1]. We will make considerable use of the so-called beta-gamma algebra (see [15], [18]),
which consists of a collection of distributional relationships which may be summarized as

Gamma(α,θ)
d
= Gamma(α+ β ,θ)× Beta(α,β),
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where the terms on the right-hand side are independent. We will state various standard lemmas in
the course of the text, as we require them.

We write

∆n =
�

x= (x1, x2, . . . , xn) :
n
∑

j=1

x j = 1, x j > 0,1≤ j ≤ n
�

for the (n− 1)-dimensional simplex. For (α1, . . . ,αn) ∈∆n, the Dirichlet(α1,α2, . . . ,αn) distribution
on ∆n has density

Γ(α1+α2+ · · ·+αn)
Γ(α1)Γ(α2) . . .Γ(αn)

·
n
∏

j=1

xαn−1
j ,

with respect to (n− 1)-dimensional Lebesgue measure Ln−1 (so that, in particular, xn = 1− x1 −
x2−· · ·− xn−1). Fix any θ > 0. Then if Γ1,Γ2, . . . ,Γn are independent with Γ j ∼ Gamma(α j ,θ) and
we set

(X1, X2, . . . , Xn) =
1

∑n
j=1Γ j

(Γ1,Γ2, . . . ,Γn),

then (X1, X2, . . . , Xn) ∼ Dirichlet(α1,α2, . . . ,αn), independently of
∑n

j=1Γ j ∼ Gamma(
∑n

j=1α j ,θ)
(for a proof see, e.g., [27]).

A random variable has Rayleigh distribution if it has density se−s2/2 on [0,∞). Note that this is the
distribution of the square root of an Exp(1/2) random variable. The significance of the Rayleigh
distribution in the present work is that, as mentioned above, it is the distribution of the distance
between the root and a uniformly-chosen point of the Brownian CRT (or, equivalently, between
two uniformly-chosen points of the Brownian CRT) [3]. We note here, more generally, that if
Γ∼ Gamma( k+1

2
, 1

2
) for k ≥ 0 then

p
Γ has density

1

2(k−1)/2Γ( k+1
2
)

xke−x2/2. (3)

Note that in the case k = 0, we have Γ∼ Gamma(1
2
, 1

2
) which is the same as the χ2

1 distribution. So,
as is trivially verified, for k = 0, (3) is the density of the modulus of a Normal(0,1) random variable.

The following relationship between Dirichlet and Rayleigh distributions will be important in the
sequel.

Proposition 5. Suppose that (X1, X2, . . . , Xn) ∼ Dirichlet(1
2
, . . . , 1

2
) independently of R1, R2, . . . , Rn

which are i.i.d. Rayleigh random variables. Suppose that (Y1, Y2, . . . , Yn) ∼ Dirichlet(1,1, . . . , 1), inde-
pendently of Γ∼ Gamma( n+1

2
, 1

2
). Then

(R1

p

X1, R2

p

X2, . . . , Rn

p

Xn)
d
=
p
Γ× (Y1, Y2, . . . , Yn).

Proof. Firstly, R2
1, R2

2, . . . , R2
n are independent and identically distributed Exp(1

2
) random variables.

Secondly, for any t > 0, if A ∼ Gamma(t, 1
2
) and B ∼ Gamma(t + 1

2
, 1

2
) are independent random

variables, then from the gamma duplication formula

AB
d
= C2, (4)
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where C ∼ Gamma(2t, 1) (see, e.g., [24, 35]). So, we can take R j =
p

E j , 1 ≤ j ≤ n, where

E1, E2, . . . , En are independent and identically distributed Exp(1
2
) and take

(X1, X2, . . . , Xn) =
1

∑n
j=1 G j

(G1, G2, . . . , Gn),

where G1, G2, . . . , Gn are independent and identically distributed Gamma(1
2
, 1

2
) random variables,

independent of E1, E2, . . . , En. Note that
∑n

j=1 G j is then also independent of (X1, . . . , Xn) and has

Gamma( n
2
, 1

2
) distribution. It follows that

(R1

p

X1, R2

p

X2, . . . , Rn

p

Xn) =
1

Æ

∑n
j=1 G j

(
p

E1G1, . . . ,
p

EnGn).

Now by (4),
p

E1G1, . . . ,
p

EnGn are independent and distributed as exponential random variables
with parameter 1. So

(Y1, . . . , Yn) :=
1

∑n
j=1

p

E jG j

(
p

E1G1, . . . ,
p

EnGn)∼ Dirichlet(1,1, . . . , 1),

and (Y1, . . . , Yn) is independent of
∑n

j=1

p

E jG j which has Gamma(n, 1) distribution. Hence,

n
∑

j=1

p

E jG j ×
1

∑n
j=1

p

E jG j

(
p

E1G1, . . . ,
p

EnGn)

=
Æ

∑n
j=1 G j ×

1
Æ

∑n
j=1 G j

(
p

E1G1, . . . ,
p

EnGn),

where the products × on each side of the equality involve independent random variables. Applying
a Gamma cancellation (Lemma 8 of Pitman [31]), we conclude that

(R1

p

X1, R2

p

X2, . . . , Rn

p

Xn)
d
=
p
Γ× (Y1, Y2, . . . , Yn),

where Γ is independent of (Y1, . . . , Yn) and has a Gamma( n+1
2

, 1
2
) distribution.

3.2 Distributional properties of the components

Procedure 1 is essentially a consequence of Theorems 6 and 8, below, which capture many of the
key properties of the metric space g(2ẽ,P ) corresponding to the limit of a connected component
of G(n, p) conditioned to have size of order n2/3, where p ∼ 1/n. They provide us with a way to
sample limit components using only standard objects such as Dirichlet vectors and Brownian CRT’s.

Theorem 6 (Complex components). Conditional on |P |= k ≥ 2, the following statements hold.

(a) The kernel K(2ẽ,P ) is almost surely 3-regular (and so has 2(k− 1) vertices and 3(k− 1) edges).
For any 3-regular K with t loops,

P (K(2ẽ,P ) = K | |P |= k)∝
�

2t
∏

e∈E(K)

mult(e)!

�−1

. (5)
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(b) For every vertex v of the kernel K(2ẽ,P ), we have µ(v) = 0 almost surely.
(c) The vector (µ(e)) of masses of the edges e of K(2ẽ,P ) has a Dirichlet(1

2
, . . . , 1

2
) distribution.

(d) Given the masses (µ(e)) of the edges e of K(2ẽ,P ), the metric spaces induced by g(2ẽ,P ) on the
edge trees are CRT’s encoded by independent Brownian excursions of lengths (µ(e)).

(e) For each edge e of the kernel K(2ẽ,P ), the two distinguished points in κ−1(e) are independent
uniform vertices of the CRT induced by κ−1(e).

As mentioned earlier, (a) is an easy consequence of [25, Theorem 7 and (1.1)] and [29, Theorem
4] (see also [26, Theorems 5.15 and 5.21]). Also, it should not surprise the reader that the vertex
trees are almost surely empty: in the finite-n case, attaching them to the kernel requires only one
uniform choice of a vertex (which in the limit becomes a leaf) whereas the edge trees require two
such choices. The choice of two distinguished vertices has the effect of “doubly size-biasing” the
edge trees, making them substantially larger than the singly size-biased vertex trees.

It turns out that similar results to those in (c)-(e) hold at every step of the stick-breaking construction
and that, roughly speaking, we can view the stick-breaking construction as decoupling into indepen-
dent stick-breaking constructions of rescaled Brownian CRT’s along each edge, conditional on the
final masses. This fact is intimately linked to the “continuous Pólya’s urn” perspective mentioned
earlier, and also seems related to an extension of the gamma duplication formula due to Pitman
[31]. However, to make all of this precise requires a fair amount of terminology, so we postpone
further discussion until later in the paper.

We note the following corollary about the lengths of the paths in the core of the limit metric space.

Corollary 7. Let K be a 3-regular graph with edge-set E(K) = {e1, e2, . . . , em} (with arbitrary labeling).
Then, conditional on K(2ẽ,P ) = K, the following statements hold.

(a) Let (X1, . . . , Xm) be a Dirichlet(1
2
, . . . , 1

2
) random vector. Let R1, R2, . . . , Rm be independent and

identically distributed Rayleigh random variables. Then,

(|π(e1)|, |π(e2)|, . . . , |π(em)|)
d
= (R1

p

X1, R2

p

X2, . . . , Rm

p

Xm).

(b) Let Γ be a Gamma
�

m+1
2

, 1
2

�

random variable. Then,

m
∑

j=1

|π(e j)|
d
=
p
Γ and

1
∑m

j=1 |π(e j)|
(|π(e1)|, |π(e2)|, . . . , |π(em)|)∼ Dirichlet(1, . . . , 1)

independently.

Proof. The distance between two independent uniform leaves of a Brownian CRT is Rayleigh dis-
tributed [3]. So the first statement follows from Theorem 6 (c)–(e) and a Brownian scaling argu-
ment. The second statement follows from Proposition 5.

The cases of tree and unicylic components, for which the kernel is empty, are not handled by The-
orem 6. The limit of a tree component is simply the Brownian CRT. The corresponding result for a
unicyclic component is as follows.

Theorem 8 (Unicyclic components). Conditional on |P |= 1, the following statements hold.
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(a) The length of the unique cycle is distributed as the modulus of a Normal(0, 1) random variable (by
(3) this is also the distribution of the square root of a Gamma(1

2
, 1

2
) random variable).

(b) A unicyclic limit component can be generated by sampling (P1, P2) ∼ Dirichlet(1
2
, 1

2
), taking two

independent Brownian CRT’s, rescaling the first by
p

P1 and the second by
p

P2, identifying the
root of the first with a uniformly-chosen vertex in the same tree and with the root of the other, to
make a lollipop shape.

Finally, we note here an intriguing result which is a corollary of Theorem 6 and Theorem 2 of Aldous
[5].

Corollary 9. Take a (rooted) Brownian CRT and sample two uniform leaves. This gives three subtrees,
each of which is marked by a leaf (or the root) and the branch-point. These doubly-marked subtrees
have the same joint distribution as the three doubly-marked subtrees which correspond to the three core
edges of g(2ẽ,P ) conditioned to have surplus |P |= 2.

In the remainder of this paper, we prove Theorems 4, 6 and 8 using the limiting picture of [1],
described in Section 2.1. Our approach is to start from the core and then construct the trees which
hook into each of the core edges. The lengths in the core are studied in Section 4. The stick-breaking
construction of a limiting component is discussed in Section 5. Finally, we use the urn model in order
to analyze the stick-breaking construction and to prove the distributional results in Section 6.

4 Lengths in the core

Suppose we have surplus |P |= k ≥ 1.

If k ≥ 2 then there are m = 3(k − 1) edges in the kernel. Each of these edges corresponds to a
path in the core. Let the lengths of these paths be L1(0), L2(0), . . . , Lm(0) (in arbitrary order; their
distribution will turn out to be exchangeable). Let C(0) =

∑m
i=1 Li(0) be the total length in the core

and let (P1(0), P2(0), . . . , Pm(0)) be the vector of the proportions of this length in each of the core
edges, so that (L1(0), L2(0), . . . , Lm(0)) = C(0) · (P1(0), P2(0), . . . , Pm(0)). Then we can rephrase
Corollary 7 as the following collection of distributional identities:

C(0)2 ∼ Gamma(m+1
2

, 1
2
) (6)

(P1(0), P2(0), . . . , Pm(0))∼ Dirichlet(1,1, . . . , 1) (7)

(L1(0), L2(0), . . . , Lm(0))
d
= (R1

p

P1, R2

p

P2, . . . , Rm

p

Pm), (8)

where C(0) is independent of (P1(0), P2(0), . . . , Pm(0)) and where R1, R2, . . . , Rm are i.i.d. with
Rayleigh distribution, independently of (P1, P2, . . . , Pm) ∼ Dirichlet(1

2
, 1

2
, . . . , 1

2
). Of course, (8) fol-

lows from (6) and (7) using Proposition 5. Although we stated these identities as a corollary of
Theorem 6, proving them will, in fact, be a good starting point for our proofs of Theorem 6.

In the case k = 1, the core consists of a single cycle. Write C(0) for its length. Then we can rephrase
part (a) of Theorem 8 as

C(0)2 ∼ Gamma(1
2
, 1

2
), (9)

so that, in particular, C(0) is distributed as the modulus of a standard normal random variable.
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For the remainder of the section, we will use the notation TR(h,Q), where h is an excursion and
Q ⊆ Ah is a finite set of points lying under h, to mean the so-called reduced tree of Th, that is the
subtree spanned by the root and by the leaves corresponding to the points {x : ξ = (x , y) ∈ Q} of
the excursion (as defined on page 747). See Figure 2.

We first spend some time deriving the effect of the change of measure (1) conditioned on |P |= k, in
a manner similar to the explanation of the scaling property on page 748. We remark that conditional
on ẽ and on |P |= k, we may view the points of P as selected by the following two-stage procedure
(see Proposition 19 of [1]). First, choose V = (V1, . . . , Vk), where V1, . . . , Vk are independent and
identically distributed random variables on [0, 1] with density proportional to ẽ(u). Then, given V,
choose W = (W1, . . . , Wk) where Wi is uniform on [0, 2ẽ(Vi)], and take P to be the set of points
(V,W) = {(V1, W1), . . . , (Vk, Wk)}. Now suppose that f is a non-negative measurable function. Then
by the tower law for conditional expectations, we have

E
�

f (ẽ,P ) | |P |= k
�

=
E
�

f (ẽ,P )1{|P |=k}
�

P (|P |= k)

=
E
�

E
�

f (ẽ, (V,W))1{|P |=k} | ẽ
��

E [P (|P |= k | ẽ)]

=
E
h

E
�

f (ẽ, (V,W)) | ẽ
�

· 1
k!

�

∫ 1

0
ẽ(u)du

�k exp
�

−
∫ 1

0
ẽ(u)du

�

i

E
h

1
k!

�

∫ 1

0
ẽ(u)du

�k exp
�

−
∫ 1

0
ẽ(u)du

�

i .

Expressing E
�

f (ẽ, (V,W)) | ẽ
�

as an integral over the possible values of V, the normalization factor

exactly cancels the term (
∫ 1

0
ẽ(u)du)k in the numerator, and so the change of measure (1) yields

E
�

f (ẽ,P ) | |P |= k
�

=
E
h

∫ 1

0
· · ·
∫ 1

0
f (ẽ, (u,W))ẽ(u1) . . . ẽ(uk)du1 . . . duk · exp

�

−
∫ 1

0
ẽ(u)du

�

i

E
h

�

∫ 1

0
ẽ(u)du

�k · exp
�

−
∫ 1

0
ẽ(u)du

�

i

=
E
h

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
f (e, (u,W))e(u1)e(u2) . . .e(uk)du1du2 . . . duk

i

E
h

�

∫ 1

0
e(u)du

�k
i

=
E
�

f (e, (U,W))e(U1)e(U2) . . .e(Uk)
�

E
�

e(U1)e(U2) . . .e(Uk)
� , (10)

where U= (U1, . . . , Uk) and U1, . . . , Uk are independent U[0,1] random variables.

Informally, the preceding calculation can be interpreted as saying that conditional on |P | = k, the

probability of seeing a given excursion e is proportional to (
∫ 1

0
e(u)du)k, and that this bias can be

captured by choosing k height-biased leaves of the conditioned tree (or, equivalently, points of the
conditioned excursion). We next derive the consequences of this fact for distribution of the lengths
in the core.

4.1 The subtree spanned by the height-biased leaves

Recall that to obtain the core from the excursion 2ẽ and the points P we first form the subtree
TC(2ẽ,P ) of T2ẽ which is spanned by the points {x : ξ= (x , y) ∈ P }∪{r(x) : ξ= (x , y) ∈ P }, and
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then identify x and r(x) for each ξ ∈ P . This is depicted in Figure 3. We remark that TC(2ẽ,P ) is
a subtree of the reduced tree TR(2ẽ,P ), since TR(2ẽ,P ) is the subtree of T2ẽ which is spanned by
the root and the points in {x : ξ= (x , y) ∈ P }, and each point r(x) (or rather its equivalence class)
is on the path from the root to x .

Conditional on |P | = k, the tree TR(2ẽ,P ) consists of 2k − 1 line-segments. If k ≥ 2, the core
is obtained from them as follows. First sample the k path-points corresponding to the leaves (this
corresponds to the choice of the points W1, . . . , Wk above). The 2(k − 1) vertices of the core are
then precisely the branch-points which were already present and the path-points which have just
been sampled, less whichever of these points happens to be closest to the root. (This can be either
a branch-point or a path-point.) Now throw away the line-segment closest to the root (this gives
TC(2ẽ,P )) and make the vertex-identifications. This yields a core C(2ẽ,P ) which has precisely
3(k− 1) edges.

If k = 1, the core is obtained from the subtree of the tilted tree spanned by the root and the single
height-biased leaf by sampling the path-point, throwing away the segment closest to the root and
making the vertex-identification.

In either case, we will find it helpful here to think of the 2k− 1 line-segments which make up our
reduced tree as a combinatorial tree with edge-lengths rather than as a real tree. This tree with
edge-lengths has a certain tree-shape which we will find it convenient to represent as a labeled
binary combinatorial tree. Label the leaves 1,2, . . . , k arbitrarily. Now label internal vertices by
the concatenation of all of the labels of their descendants which are leaves. We do not label the
root. Write Lv for the length of the unique shortest line-segment which joins the vertex labeled v to
another vertex nearer the root. Write T for the set of vertices (vertex-labels) of this tree, excluding
the root. Since the edges of the tree can be derived from the vertex labels, we will refer to T as the
tree-shape. In the following, we write w � v to denote that w is on the path between v and the root,
including v but not the root.

Lemma 10. Let k ≥ 1. For a tree-shape t and edge-lengths `v , v ∈ t, let `̀̀ = {`v , v ∈ t}. The joint
density of the tree-shape T and lengths Lv , v ∈ T is

f̃ (t, `̀̀)∝





k
∏

i=1

�

∑

w´i

`w

�



 ·
�

∑

v∈t
`v

�

· exp

�

−
1

2

�

∑

v∈t
`v

�2�

.

Proof. In order to see this, recall from page 759 that if |P |= k then the k leaves are at heights given
by ẽ(V1), ẽ(V2), . . . , ẽ(Vk) where, given ẽ, V1, V2, . . . , Vk are independent and identically distributed
with density proportional to ẽ(u). From the excursion ẽ and the values V1, V2, . . . , Vk, it is possible
to read off the tree-shape T and the lengths Lv , v ∈ T . We will write T = T (ẽ,V).

Given a particular tree-shape, if v = i1i2 . . . ir then the vertex v is at height

min{ẽ(u) : Vi1 ∧ Vi2 ∧ · · · ∧ Vir ≤ u≤ Vi1 ∨ Vi2 ∨ · · · ∨ Vir }.

Thus, if v has parent w = vir+1ir+2 . . . ir+s for some ir+1, ir+2, . . . , ir+s all different from i1, . . . , ir ,
then

Lv =min{ẽ(u) : Vi1 ∧ Vi2 ∧ · · · ∧ Vir ≤ u≤ Vi1 ∨ Vi2 ∨ · · · ∨ Vir }

−min{ẽ(u) : Vi1 ∧ Vi2 ∧ · · · ∧ Vir+s
≤ u≤ Vi1 ∨ Vi2 ∨ · · · ∨ Vir+s

}.

760



In order to make the dependence on ẽ and V = (V1, V2, . . . , Vk) clear, write Lv = Lv(ẽ,V). So, using
the tower law for conditional expectations and the change of measure as we did in (10), we obtain

P
�

Lv(ẽ,V)> xv , v ∈ T (ẽ,V) | |P |= k
�

=
E
�

1{Lv(e,U)>xv ,v∈T (e,U)}e(U1)e(U2) . . .e(Uk)
�

E
�

e(U1)e(U2) . . .e(Uk)
� , (11)

where U = (U1, U2, . . . , Uk) and U1, U2, . . . , Uk are independent U[0, 1] random variables. Note that
T (e,U) is then the tree-shape of the subtree of a standard Brownian CRT spanned by k uniform
leaves, and {Lv(e,U), v ∈ T (e,U)} are its lengths. It follows from equation (13) of Aldous [3] that
for T (e,U), the tree-shape and lengths have joint density

f (t, `̀̀) =

�

∑

v∈t
`v

�

· exp






−

1

2

 

∑

v∈t
`v

!2





. (12)

In particular, T (e,U) is uniform on all possible tree-shapes and the lengths {Lv(e,U), v ∈ T (e,U)}
have an exchangeable distribution. Moreover, for 1≤ i ≤ k,

e(Ui) =
∑

w´i

Lw(e,U).

Then from (11), writing the expectations as integrals over the density and differentiating, we obtain
the claimed result.

Remark. Given this density representation, a natural hope would be that different values of k could
be coupled to obtain an increasing family of weighted trees {(Tk, {Lv , v ∈ Tk})}∞k=1 such that for
each k, Tk and {Lv , v ∈ Tk} have joint distribution given by the density in Lemma 10. However, it is
possible to check by hand that for the smallest non-trivial case, k = 4, the distribution on tree shapes
induced by the density in Lemma 10 is not uniform, and so the most naive strategy for accomplishing
such a coupling (start from an increasing sequence of uniform leaf-labeled binary trees – Catalan
trees – and then augment with random edge lengths) is unsurprisingly doomed to failure.

4.2 Adding the points for identification: the pre-core

Now consider the tree TR(2ẽ,P ) additionally marked with the path-points. This yields a new tree
with edge-lengths which will be important in the sequel, so we will call it the pre-core (see Figure 4,
and compare with Figure 2). In particular, the pre-core consists of 3k − 1 line-segments whose
lengths we will now describe.

Lemma 11. Suppose k ≥ 1. The lengths of the 3k−1 line-segments in the pre-core have an exchangeable
distribution. With an arbitrary labeling, write M1, M2, . . . , M3k−1 for these lengths; then their joint
density is proportional to

 

3k−1
∑

i=1

mi

!

· exp

�

−
1

2

 

3k−1
∑

i=1

mi

!2�

. (13)

Proof. Consider the locations of the marks. The mark corresponding to leaf i is uniform on the
path from the root to the leaf i. In a tree with tree-shape t and lengths `v , v ∈ t, this path has
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Figure 4: An excursion h and the pre-core corresponding to the pointset Q = {a, b, c, d} (which has size
k = 4). The pre-core is a combinatorial tree with edge-lengths. It has 3k vertices: the root, the leaves, the
path-points a, b, c, d and the branch-points 1, 2,3. The dashed lines have zero length.

length
∑

w´i `w . For each leaf 1 ≤ i ≤ k, let wi ´ i be the vertex of t closest to the root such that
the path-point corresponding to i lies between wi and the root. The tree-shape, the lengths of the
2k− 1 edges of the tree and the vertices wi , 1 ≤ i ≤ k below which the uniform random variables
corresponding to leaves 1,2, . . . , k fall have joint density

f̃ (t, `̀̀) ·
k
∏

i=1

`wi
∑

w´i `w
∝

 

k
∏

i=1

`wi

!

·

 

∑

v∈t
`v

!

· exp

�

−
1

2

 

∑

v∈t
`v

!2�

. (14)

Given that the uniform random variable corresponding to leaf i falls in the edge below vertex wi , the
length `wi

gets split at a uniform point. More generally, if r uniforms fall in a particular edge below a
vertex w, of length `, that edge gets split with an independent Dirichlet(1,1, . . . , 1) random variable,
where the Dirichlet has r + 1 co-ordinates. Write M1

w , M2
w , . . . , M r+1

w for the resulting lengths. Note
that the joint density of these lengths is then `−r . It follows that, whenever we split an edge of
length ` into r + 1 pieces, the density of the resulting pieces exactly cancels the factor of `r in (14).
Let r(w) = |{1≤ i ≤ k : wi = w}| be the number of path-points falling in the edge below w. Then by
a change of variable (still conditional on the uniform random variable corresponding to leaf i falling
in the edge below wi , for 1 ≤ i ≤ k), the lengths M1

w , M2
w , . . . , M r(w)+1

w , w ∈ T have joint density
proportional to

�

∑

w∈T

r(w)+1
∑

j=1

m j
w

�

· exp






−

1

2

�

∑

w∈T

r(w)+1
∑

j=1

m j
w

�2





.

Since this is symmetric in the variables m1
w , m2

w , . . . , mr(w)+1
w , w ∈ T , we may take an arbitrary rela-

beling of the lengths. The lengths, now labeled M1, M2, . . . , M3k−1, then have joint density propor-
tional to (13), as required.

4.3 The lengths after identifications: the core

Now recall that we obtain the core from the pre-core by chopping off the line-segment closest to the
root and making the vertex identifications. We now know that the line-segments involved have an
exchangeable distribution and so, in particular, the exact labeling is unimportant.
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Lemma 12. COMPLEX COMPONENTS. Suppose k ≥ 2 and let m= 3(k−1). Write B for the length of the
line-segment closest to the root, write C∗ for the length of the core-edge to which it attaches and write
C1, C2, . . . , Cm−1 for the lengths of the other core edges. Then

(C1, C2, . . . , Cm−1, C∗)
d
=
p
Γ(Z1, Z2, . . . , Zm−1, Zm),

where (Z1, Z2, . . . , Zm−1, Zm) ∼ Dirichlet(1, 1, . . . , 1, 2) is independent of Γ ∼ Gamma(m+1
2

, 1
2
). The

random variable B depends on C1, C2, . . . , Cm−1, C∗ only through their sum. Conditional on C1 + C2 +
· · ·+ Cm−1+ C∗ = w, B has density proportional to

(w+ b)exp
�

−
1

2

�

(w+ b)2−w2
�

�

.

UNICYCLIC COMPONENTS. Suppose that k = 1. Write C for the length of the cycle and B for the length of
the line-segment attaching it to the root. Then

(C , B)
d
=
p
Γ(U , 1− U), (15)

where Γ∼ Gamma(3
2
, 1

2
) and U ∼ U[0, 1] are independent.

Proof. Suppose first that k ≥ 2. One of the 3k − 1 edges M1, M2, . . . , M3k−1 is closest to the root.
Since the distribution of these random variables is exchangeable we can, without loss of generality,
assume that B = M3k−1. Of the remaining lengths M1, M2, . . . , M3k−2, all but the two which (after
vertex-identifications) are incident to the discarded length straightforwardly become edges of the
core. Once again without loss of generality, we can take Ci = Mi for 1 ≤ i ≤ 3k− 4. The two edges
which are incident to the discarded length become a single core-edge, of length C∗ = M3k−3+M3k−2.

We next make a straightforward change of variables: for 1≤ i ≤ 3k− 3, let

Vi =
Mi

M1+ · · ·+M3k−2
.

Let W = M1 + · · ·+ M3k−2. Then the joint density of V1, V2, . . . , V3k−3, W and B = M3k−1 is easily
shown to be

w3k−3(w+ b)exp
�

−
1

2
(w+ b)2

�

.

This proves that V1, V2, . . . , V3k−3 are independent of W and B and that

(V1, V2, . . . , V3k−3, 1− V1− · · · − V3k−3)∼ Dirichlet(1, 1, . . . , 1).

Moreover it proves that W has density proportional to w3k−3 exp
�

−1
2
w2
�

and that, conditional on
W = w, B has density proportional to

(w+ b)exp
�

−
1

2

�

(w+ b)2−w2
�

�

.

The result follows by recalling that m = 3k − 3 and the standard property of Dirichlet ran-
dom variables that if (A1, A2, . . . , Ar) ∼ Dirichlet(α1,α2, . . . ,αr) then (A1, A2, . . . , Ar−2, Ar−1 + Ar) ∼
Dirichlet(α1,α2, . . . ,αr−2,αr−1+αr).
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In the case k = 1, a similar calculation shows that the two lengths (M1, M2) which make up the
pre-core satisfy

(M1, M2)
d
=
p
Γ(U , 1− U), (16)

where Γ∼ Gamma(3/2,1/2) and U ∼ U[0,1] independently. Since these lengths are exchangeable,
we can arbitrarily declare the first to be the length of the cycle and the second to be the length of
the segment attaching it to the core.

The results stated in the following lemma are straightforward and may be found, for example, in
Bertoin and Goldschmidt [11].

Lemma 13. Suppose that (Y1, Y2, . . . , Ym) ∼ Dirichlet(1,1, . . . , 1). Let Y ∗ be a size-biased pick from
this vector, and relabel the other co-ordinates arbitrarily Y ∗1 , Y ∗2 , . . . , Y ∗m−1. Then

(Y ∗1 , Y ∗2 , . . . , Y ∗m−1, Y ∗)∼ Dirichlet(1, 1, . . . , 1, 2).

Moreover, if U is an independent U[0,1] random variable,

(Y ∗1 , Y ∗2 , . . . , Y ∗m−1, Y ∗U , Y ∗(1− U))∼ Dirichlet(1,1, . . . , 1).

The distributional identity (6) follows straightforwardly from the first part of Lemma 12. Further-
more, by appeal to the finite-n picture, it is obvious that the point at which the path from the root
attaches to the core is a uniform point on the core. It follows that in the limit, the core edge to
which the root attaches is a size-biased pick from among the core-edges, and attaches to a uniform
point along this edge. This is exactly the procedure described in Lemma 13, and so the identity (7)
follows from Lemmas 12 and 13. The identity (9) follows from (15) using the fact that the density
of
p
Γ is proportional to x2e−x2/2. This identifies it as the size-biased Rayleigh distribution, written

R∗. Finally, UR∗ has the same distribution as the modulus of a Normal(0, 1) random variable (see
p.121 of Evans et al. [21]).

Remark. Lemmas 12 and 13 in fact tell us more than we need: they also specify the distribution
of the line-segment which originally attached the root to the core. In the case k ≥ 2, this turns out
to have the distribution of the time until the next point in an inhomogeneous Poisson process with
instantaneous rate t at time t, given that the first point is at C(0). (This is not true in the case k = 1
where, as we will see in the next section, in order to have a stick-breaking construction we have to
start from the core and the edge attaching it to the root. We alluded to this somewhat mysterious
requirement earlier in the paper.) Moreover, this line-segment attaches in a uniform position on the
core. These facts will be useful in the next section.

5 The stick-breaking construction of a limit component

We now prove the extension of the stick-breaking construction of the Brownian CRT which we
stated in Theorem 4. Fix a number k ≥ 1 of surplus edges. We have already described the joint
distribution of the 3k− 1 line-segments in the pre-core. In order to create the whole metric space,
it suffices to “decorate” the pre-core with the other parts of the tilted tree, and then make the right
vertex-identifications. As mentioned in the introduction, we use Aldous’ notion of random finite-
dimensional distributions (see [4]). By Theorem 3 of [4], the distribution of a continuum random
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tree coded by an excursion is determined by the distributions of the sequence of finite subtrees
obtained by successively sampling independent uniform points in the tree. We will use this idea on
our tilted trees.

It is perhaps surprising that the construction should be so similar to that of the Brownian CRT,
considering that we start from a tilted excursion. The key observation (proved below) is that the
effect of tilting the tree can be felt entirely in the total length of the k special branches which are
used to create the pre-core or, equivalently, in the total length of the 3k − 1 line-segments which
make up the pre-core.

Once again, we need some notation and it is convenient to think again of tree-shapes and lengths.
The tree-shape of the pre-core is not a binary tree because the path-points are vertices of degree 2.
So we need an elaboration of our labeling-scheme. The pre-core has 3k vertices which we will label
as follows. Label the leaves by 1,2, . . . , k (in some arbitrary order). Then label recursively from the
leaves towards the root, which is, itself, left unlabeled. For an internal vertex of degree three, label
it by the concatenation of the labels of its two children. For an internal vertex of degree two (i.e. a
path-point) give it the label of its child, but with the label of the leaf whose path-point it is repeated.
Write T (0) for this tree-shape (where, as in the case of TR(2ẽ,P ), the root is excluded), and for
v ∈ T (0) write L(0)v for the length of the unique shortest line-segment which joins v to another vertex
nearer the root. Then by Lemma 11, given T (0) = t, the joint density of L(0)v , v ∈ T (0) is proportional
to

 

∑

v∈t
`v

!

· exp

�

−
1

2

 

∑

v∈t
`v

!2�

.

(Note the similarity to the density (12) of the edge lengths in the subtree of a Brownian CRT span-
ning a collection of uniform leaves.)

In Lemma 14 we prove that, given these lengths, the decoration process (stick-breaking construc-
tion) works in the same way as it does in Aldous’ construction of the Brownian CRT. That is, we take
the inhomogeneous Poisson process from time

∑

v∈T (0) L(0)v onwards, and for each inter-jump time
(the first being measured from

∑

v∈T (0) L(0)v ), we add a line-segment of that length at a uniformly-
chosen point on the structure already created.

Starting from the pre-core edges, if we sample a uniform point from the tilted tree, it corresponds
to a branch which attaches somewhere on the pre-core, splitting one of the pre-core lengths in two.
Sampling further points similarly causes the splitting in two of lengths already present. Let T (n)

be the tree-shape obtained by taking the pre-core and sampling n additional uniform points of the
excursion, with labeling as before. Let L(n)v be the corresponding lengths.

Lemma 14. For n≥ 1, conditional on T (n) = t, the joint density of the lengths L(n)v is proportional to

 

∑

v∈t
`v

!

exp






−

1

2

 

∑

v∈t
`v

!2





.

Moreover, this is the same as the joint distribution of lengths obtained by the stick-breaking construction
proposed above.

Proof. The first part of the proof is similar to that of Lemma 10. As there, the k special leaves
are at heights ẽ(V1), ẽ(V2), . . . , ẽ(Vk) where, given ẽ, V1, V2, . . . , Vk are independent and identically
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distributed with density proportional to ẽ(u). Let W1, W2, . . . , Wk be the U[0,1] random variables
which give the positions along the paths to the root of the path-points corresponding to leaves
1,2, . . . , k respectively. W1, W2, . . . , Wk are mutually independent and independent of everything
else. Finally, let U1, U2, . . . be another sequence of independent U[0, 1] random variables, which
will generate the uniformly-chosen leaves, having heights ẽ(U1), ẽ(U2), . . .. For n ≥ 1, write T (n) =
T (n)(ẽ,V,W;U) and, for v ∈ T (n), L(n)v = L(n)v (ẽ,V,W;U) and note that these quantities can be
calculated explicitly from the random ingredients ẽ, V = (V1, V2, . . . , Vk), W = (W1, W2, . . . , Wk), and
U= (U1, U2, . . . , Un), although in a somewhat complicated way. Using the change of measure,

P
�

L(n)v (ẽ,V,W;U)> xv ∀ v ∈ T (n)(ẽ,V,W;U)
�

�

� |P |= k
�

∝ E
h

1{L(n)v (e,U′,W;U)>xv ∀ v∈T (n)(e,U′,W;U)}e(U
′
1)e(U

′
2) . . .e(U ′k)

i

,

where U ′1, U ′2, . . . , U ′k are more independent U[0,1] random variables, independent of everything
else. Note that T (n)(e,U′,W;U) is just the tree-shape derived from picking k+ n uniform leaves and
picking path-points for the first k of them, and L(n)v (e,U′,W;U) are the corresponding lengths. The
claimed joint density then follows from the same arguments as used in the proofs of Lemmas 10
and 11.

The proof that this is the joint distribution given by the stick-breaking construction is identical to
that of Lemma 21 in Aldous [4].

We now prove Theorem 4 and thereby justify the third of our construction techniques.

Proof of Theorem 4. Let m = m(n) and p = p(n) be such that mn−2/3 → 1 and pn → 1. Consider
a probability space in which m−1/2Gp

m → g(2ẽ,P ) almost surely as n → ∞; such a space exists
by Theorem 1 and Skorohod’s representation theorem. Theorem 7 of [25] implies that for any
3-regular kernel K with fixed surplus k ≥ 2 and with t loops,

P(K(Gp
m) = K | Gp

m has surplus k)∝ (1+ o(1))

�

2t
∏

e∈E(K)

mult(e)!

�−1

,

as m→∞. Furthermore, by [29], Theorem 4, all vertices of degree three in K(Gp
m) are separated

by distance of order m1/2, so all such vertices remain distinct in the limit. This proves that the shape
of the limiting kernel K(2ẽ,P ) has the claimed distribution.

Next, the fact that the lengths in the kernel and rooted pre-core are as in Theorem 4 follows from
(6), (7) and (9). Since 2ẽ almost surely encodes a compact real tree, it is also clear that the trees
T (m) of Lemma 14 converge almost surely to the tree encoded by 2ẽ. Lemma 21 of [1] says that
a finite number of vertex identifications encoded by a fixed number of points under the contour
process will not disrupt this convergence and so, by the validity of the method described in Section
2.1, we obtain almost sure convergence of the sequence of metric spaces created by the described
process to a metric space with distribution g(2ẽ,P ). This completes the proof.

6 An urn process to analyze the stick-breaking construction

A careful analysis of the stick-breaking construction will enable us to prove Theorems 6 and 8.
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We assume that, as in Section 4 the core has m edges of lengths L1(0), L2(0), . . . , Lm(0). Then we can
think of our stick-breaking construction as a sort of continuous Markovian balls-in-urns procedure
acting on the lengths L1(n), L2(n), . . . , Lm(n) representing the (continuous) quantities of m different
colors that we have at step n of this procedure, which we now describe. For each n ≥ 0, we write
C(n) =

∑m
i=1 Li(n) and, for 1≤ i ≤ m, we define the proportion Pi(n) = Li(n)/C(n).

Given an inhomogeneous Poisson point process of instantaneous rate t at time t has a point at c,
the density of time until the next point is proportional to

(a+ c) · exp
�

−
1

2
(a+ c)2+

1

2
c2
�

.

Suppose now we have already constructed L1(n), L2(n), . . . , Lm(n) for some n ≥ 0. At step n+ 1,
select an index I(n+ 1) from {1, . . . , m} so that

P
�

I(n+ 1) = i | P1(n), P2(n), . . . , Pm(n)
�

= Pi(n).

Then sample a random variable A(n+ 1) such that, conditional on C(n) = c, A(n+ 1) has density
proportional to

(a+ c) · exp
�

−
1

2
(a+ c)2+

1

2
c2
�

.

Finally, set

L j(n+ 1) =

(

L j(n) if j 6= I(n+ 1),
L j(n) + A(n+ 1) if j = I(n+ 1),

and set C(n + 1) = C(n) + A(n + 1). In other words, add a quantity A(n + 1) to color I(n + 1)
and increment n. It is clear that this procedure describes precisely the dynamics of the process
(L1(n), L2(n), . . . , Lm(n))n≥0.

We now characterize the evolution of the total length C(n).

Lemma 15. For c ≥ 0, the random variable C(n)2 has a Gamma((m+ 2n+ 1)/2, 1/2) distribution.
Moreover, for n≥ 1,

1

C(n)
(C(n− 1), A(n))∼ Dirichlet(n+ 2m− 1,1),

independently of C(n) = C(n− 1) + A(n).

Proof. We proceed by induction. For n = 0, the first statement is clear from (6). Suppose now that
C(n− 1) has the claimed distribution. Then C(n− 1) and A(n) have joint density proportional to

cm+2(n−1)(a+ c)exp
�

−
1

2
(a+ c)2

�

.

Write V = C(n − 1)/(C(n − 1) + A(n)) and W = C(n − 1) + A(n). A straightforward change of
variables gives that V and W have joint density proportional to vm+2(n−1)wm+2ne−w2/2. Hence, V
and W are independent and have the claimed distributions.

The continuous urn model described above can be studied using an associated discrete urn process
related to

N j(n) = 1+ 2
n
∑

k=1

1{I(k)= j},
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the number of branches corresponding to the jth core edge at step n, for n ≥ 0, 1 ≤ j ≤ m. The
following lemma is in the same spirit as Exercises 7.4.11 to 7.4.13 of Pitman [32].

Lemma 16. Conditional on N1(n), . . . , Nm(n),

(P1(n), P2(n), . . . , Pm(n))∼ Dirichlet(N1(n), N2(n), . . . , Nm(n)). (17)

Furthermore, the process (N1(n), . . . , Nm(n))n≥0 evolves as the number of balls of m different colors in a
Pólya’s urn process started with one ball of each color and where, at each step, the ball picked is returned
to the urn along with two extra balls of the same color.

In order to prove this, we first need to extend the first part of Lemma 13.

Lemma 17. Suppose that (Y1, Y2, . . . , Yn)∼ Dirichlet(α1,α2, . . . ,αn). Let I be the index of a size-biased
pick from this vector, i.e. I has conditional distribution P

�

I = i | Y1, Y2, . . . , Yn
�

= Yi . Then

P (I = i) =
αi

∑n
j=1α j

and, conditional on I = i, we have (Y1, Y2, . . . , Yn)∼ Dirichlet(α1, . . . ,αi−1,αi + 1,αi+1, . . . ,αn).

Proof. Let G1, G2, . . . , Gn be independent random variables such that Gi ∼ Gamma(αi , 1) for 1≤ i ≤
n. Write G =

∑n
j=1 G j and G(i) = G−Gi . Let Φ :∆n→ R+ be any non-negative measurable function.

Then

E
�

Φ(Y1, Y2, . . . , Yn)1{I=i}
�

= E
�

Gi

G
Φ
�

G1

G
, . . . ,

Gn

G

��

.

Note that G is independent of
�

G1

G
, . . . , Gn

G

�

and so, since E [G] =
∑n

i=1αi ,

E
�

GiΦ
�

G1

G
, . . . ,

Gn

G

��

= E
�

G ·
Gi

G
Φ
�

G1

G
, . . . ,

Gn

G

��

=

 

n
∑

i=1

αi

!

E
�

Gi

G
Φ
�

G1

G
, . . . ,

Gn

G

��

.

Integrating over the density of Gi , we see that

E
�

GiΦ
�

G1

G
, . . . ,

Gn

G

��

= E
�
∫ ∞

0

xΦ
�

G1

x + G(i)
, . . . ,

Gi−1

x + G(i)
,

x

x + G(i)
,

Gi+1

x + G(i)
, . . . ,

Gn

x + G(i)

�

1

Γ(αi)
xαi−1e−x d x

�

=
Γ(αi + 1)
Γ(αi)

E
�

Φ

�

G1

γ+ G(i)
, . . . ,

Gi−1

γ+ G(i)
,

γ

γ+ G(i)
,

Gi+1

γ+ G(i)
, . . . ,

Gn

γ+ G(i)

��

,

where γ ∼ Gamma(αi + 1,1), independently of G j , j 6= i. The result follows since the proportions
G j/(γ+ G(i)), j 6= i and γ/(γ+ G(i)) are independent of the total sum γ+ G(i).

Proof of Lemma 16. We proceed by induction on n. It is clear that the distributional identity holds
for n= 0. Suppose now that it also holds for n= k. Then, by Lemma 17,

P
�

I(k+ 1) = i | N1(k), N2(k), . . . , Nm(k)
�

=
Ni(k)

∑m
j=1 N j(k)
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and, conditional on N1(k), N2(k), . . . , Nm(k) and I(k+ 1) = i,

(P1(k), P2(k), . . . , Pm(k))∼ Dirichlet(N1(k), . . . , Ni−1(k), Ni(k) + 1, Ni+1(k), . . . , Nm(k)).

Recall from Lemma 15 that

1

C(k+ 1)
(C(k), A(k+ 1))∼ Dirichlet(m+ 2k+ 1, 1),

independently of C(k+ 1). So, conditional on N1(k), N2(k), . . . , Nm(k) and I(k+ 1) = i,

(P1(k+ 1), P2(k+ 1), . . . , Pm(k+ 1))∼ Dirichlet(N1(k), . . . , Ni−1(k), Ni(k) + 2, Ni+1(k), . . . , Nm(k)).

The claimed results follow by induction on n.

The proofs of Theorems 6 and 8 rest on Lemmas 18 and 19 below.

Lemma 18. As n→∞,

(P1(n), P2(n), . . . , Pm(n))→ (P1, P2, . . . , Pm) a.s.,

where (P1, P2, . . . , Pm)∼ Dirichlet(1
2
, 1

2
, . . . , 1

2
).

Proof. It is straightforward to see that the process (P1(n), P2(n), . . . , Pm(n))n≥0 is a bounded mar-
tingale and so possesses an almost sure limit, (P1, P2, . . . , Pm). So we need only determine the
distribution of the limit. We do so using the correspondence with the discrete urn process
(N1(n), . . . , Nm(n))n≥0 given by Lemma 16.

By Lemma 16, (N1(n), N2(n), . . . , Nm(n))n≥0 is performing Pólya’s urn scheme with m colors where
the ball picked is replaced along with two extra balls of the same color. It is standard (see, for
example, Section VII.4 of Feller [22] or Chapter V, Section 9.1 of Athreya and Ney [10]) that the
proportions of balls of each color converge almost surely; indeed,

1

m+ 2n
(N1(n), N2(n), . . . , Nm(n))→ (N1, N2, . . . , Nm)

almost surely, where (N1, N2, . . . , Nm)∼ Dirichlet(1
2
, 1

2
, . . . , 1

2
).

Now let (E j,k, 1 ≤ j ≤ m, k ≥ 1) be i.i.d. standard exponential random variables. Then, given
N1(n), N2(n), . . . , Nm(n),

(P1(n), P2(n), . . . , Pm(n))
d
=

1
∑m

j=1

∑N j(n)
k=1 E j,k

� N1(n)
∑

k=1

E1,k,
N2(n)
∑

k=1

E2,k, . . . ,
Nm(n)
∑

k=1

Em,k

�

. (18)

Thus, for each i = 1, . . . , m, using the fact that Pi(n) and Ni(n) both possess almost sure limits, we
have

P
�

Pi 6= Ni
�

= sup
ε>0
P
�

∃n0, ∀n≥ n0,

�

�

�

�

Pi(n)−
Ni(n)

m+ 2n

�

�

�

�

> ε

�

≤ sup
ε>0

lim inf
n
P
�
�

�

�

�

Pi(n)−
Ni(n)

m+ 2n

�

�

�

�

> ε

�

= 0,
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where the second line follows from Fatou’s lemma and the last equality follows from (18) and the
fact that N1(n) + . . .+ Nm(n) = m+ 2n. It follows that limn→∞(P1(n), . . . , Pm(n)) = (P1, . . . , Pm) =
(N1, . . . , Nm) almost surely, which proves the lemma.

Lemma 19. There exists a process (X1(n), . . . , Xm(n))n≥0 such that for each n, conditional on the vec-
tors (N1(n), N2(n), . . . , Nm(n)) and (X1(n), . . . , Xm(n)), the sequence of additions to index i up to time
n (including the initial length Li(0)) is the sequence of the first Ni(n) inter-jump times of an inhomo-
geneous Poisson process of instantaneous rate t at time t, all multiplied by X i(n). Moreover, under the
above conditioning, these processes are independent for distinct i. Finally, (X1(n), X2(n), . . . , Xm(n))→
(
p

P1,
p

P2, . . . ,
p

Pm) almost surely as n→∞.

We will need the following lemma on the lengths in the stick-breaking construction of the Brownian
CRT.

Lemma 20. Let L1, L2, . . . , L1+2k be the lengths in the tree created by the stick-breaking construction
of the Brownian CRT up to its kth step, so that we have added k branches to the tree. Then

(L1, L2, . . . , L1+2k)
d
=
p
Γ · (D1, D2, . . . , D1+2k),

where (D1, D2, . . . , D1+2k) ∼ Dirichlet(1,1, . . . , 1) and Γ is independent with Gamma(k+ 1,1/2) dis-
tribution.

Proof. From Aldous [3], we have that L1, L2, . . . , L1+2k have joint density

 

1+2k
∑

i=1

`i

!

exp

�

−
1

2

 

1+2k
∑

i=1

`i

!2�

.

Let W = L1+ L2+ · · ·+ L1+2k, Di = Li/W for 1≤ i ≤ 2k and D1+2k = 1− D1− D2−· · ·− D2k. Then
these random variables have joint density proportional to w2k+1e−w2/2. The result follows.

Proof of Lemma 19. Fix n ≥ 1 and 1 ≤ i ≤ m. We remark that we may think of Li(n) as composed
of Ni(n) segments of lengths

L1
i (n), . . . , LNi(n)

i (n).

These are the lengths of the line-segments which make up the subtree Ti(n) corresponding to the
ith core edge at step n in the construction. Let Hi(n) be the number of times that the ith core edge
has been hit; since each addition creates two new line segments, we have Hi(n) = (Ni(n)− 1)/2.
An argument using Lemma 13 shows that for all n, conditionally on Ni(n),

� L1
i (n)

Li(n)
, . . . ,

LNi(n)
i (n)

Li(n)

�

∼ Dirichlet(1, 1, . . . , 1), (19)

and this vector is independent of (L1(n), . . . , Lm(n)) and from L1
j (n)/L j(n), . . . , L

N j(n)
j (n)/L j(n), for

j 6= i. Since the elements of this vector are exchangeable, it follows immediately that the next
segment to choose colour i is equally likely to attach to any of the Ni(n) segments. Thus, at all
times n, the tree shape of the subtree Ti(n) composed of segments corresponding to balls of colour
i is uniform over Catalan trees with 1+ Hi(n) leaves (in fact, if we ignore the edge lengths, this is
precisely Rémy’s algorithm to generate a uniform Catalan tree [33]).
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Furthermore, by Lemma 20, (19) is exactly the right distribution for the relative lengths of edges in
the tree AHi(n) created by running the stick-breaking construction of the Brownian CRT for Hi(n)
steps.

Now, for each 1 ≤ i ≤ m, let (λi(n))n≥0 be an independent copy of the sequence of arrival times of
an inhomogeneous Poisson process of instantaneous rate t at time t (with λi(0)> 0 the first arrival
time), and let

(X i(n))n≥0 =
�

Li(n)
λi(Hi(n))

�

n≥0
.

Also, for each 1 ≤ i ≤ m and each k ≥ 0, let t i(k) = min{n : Hi(n) = k}, so (t i(k))k≥0 is the se-
quence of times at which Ni(n) increases. Write T ∗i (k) for the tree Ti(t i(k)), above, rescaled to have
total length λi(k). It follows that (T ∗i (k))k≥0 is a copy of the sequence of trees {Ak}k≥0 created by
the stick-breaking construction of the Brownian CRT, and is independent of (L1(n), . . . , Lm(n))n≥0,
(N1(n), . . . , Nm(n))n≥0, and (T ∗j (k))k≥0 for j 6= i. The first two claims in the lemma are then imme-
diate.

We have X i(n) = Li(n)/λi(Hi(n)). We can write this as

X i(n) =

p

Ni(n)− 1

λi(Hi(n))
× Pi(n)×

C(n)
p

m+ 2n+ 1
×

r

m+ 2n+ 1

Ni(n)− 1
. (20)

From Lemma 18, we have Pi(n) → Pi almost surely. Recall from Lemma 20 that λi(Hi(n))2 ∼
Gamma(Hi(n) + 1, 1

2
). Since λi(k)↗∞ as k →∞ and Hi(n), Ni(n)→∞ almost surely, it follows

that
λi(Hi(n))
p

Ni(n)− 1
∼

λi(Hi(n))
p

2(Hi(n) + 1)
→ 1 almost surely.

Similarly, from Lemma 15 we have C(n)2 ∼ Gamma((m+ 2n+ 1)/2, 1/2) and C(n) ↗ ∞ almost
surely and so

C(n)
p

m+ 2n+ 1
→ 1 almost surely.

In the proof of Lemma 18, we showed that

Ni(n)
n+ 2m

→ Pi almost surely.

Putting these facts together in (20), it follows that X i(n) →
p

Pi almost surely, completing the
proof.

We can summarize/rephrase the results of Lemmas 18 and 19 as the following counterpart of the
classical limit result for urn models [13, 23] (which is usually proved using de Finetti’s theorem
[16]). We do not know of a pre-existing reference for this result in the literature.

Theorem 21. Consider the balls-in-urns model described at the beginning of the section, with quantities
L1(n), L2(n), . . . , Lm(n) of the m different colors present at step n. The proportions of the different
colors present converge almost surely to (P1, P2, . . . , Pm)∼ Dirichlet(1

2
, 1

2
, . . . , 1

2
). Moreover, conditional

on (P1, P2, . . . , Pm), the indices I(1), I(2), . . . are independent and identically distributed with

P
�

I(1) = i | P1, P2, . . . , Pm
�

= Pi , 1≤ i ≤ m.
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Finally, conditional on (P1, P2, . . . , Pm) the sequence of additions to color i is the sequence of inter-jump
times of an inhomogeneous Poisson process with rate t at time t, rescaled by

p

Pi , for 1≤ i ≤ m.

Remark. The gamma duplication formula (4) played a central role in the proof of Proposition 5.
Equation (65) of Pitman [31] states the following generalization. Suppose that for r > 0 and
s = 1, 2, . . ., A∼ Gamma(r, 1

2
) and B ∼ Gamma(r + s− 1

2
, 1

2
). Suppose that Jr,s has distribution

P
�

Jr,s = j
�

=
(2s− j− 1)!(2r) j−1

(s− j)!( j− 1)!22s− j−1(r + 1
2
)s−1

,

where (x)n = x(x+1)(x+2) · · · (x+n−1) = Γ(x+n)/Γ(x). Finally, conditional on Jr,s, let C have
Gamma(2r + Js,r − 1,1) distribution. Then

AB
d
= C2. (21)

Suppose now that (P1, P2, . . . , Pm) ∼ Dirichlet(1
2
, 1

2
, . . . , 1

2
) and let (M1(n), M2(n), . . . , Mm(n)) ∼

Multinomial(n; P1, P2, . . . , Pm). For 1 ≤ i ≤ m, let Gi(n) ∼ Gamma(1 + Mi(n),
1
2
) indepen-

dently. Let Γn ∼ Gamma((m + 2n + 1)/2,1/2). Let N1(n), N2(n), . . . , Nm(n) be the number of
balls at step n of Pólya’s urn model started with one ball of each color and such that each ball
picked is replaced along with two more of the same color. Finally, let (P1(n), P2(n), . . . , Pm(n)) ∼
Dirichlet(N1(n), N2(n), . . . , Nm(n)). Then as a consequence of Lemma 20 and Theorem 21, we have

(
p

P1G1(n),
p

P2G2(n), . . . ,
p

PmGm(n))
d
=
p

Γn(P1(n), P2(n), . . . , Pm(n)).

It seems likely that some version of (21) for appropriate values of r and s is hidden in this
distributional relationship.

We can, at last, complete the proofs of Theorems 6 and 8.

Proof of Theorem 6. Theorem 6 (a) was already proved in the course of proving Theorem 4. Part (b)
follows from Theorem 4 as the construction procedure in that theorem almost surely places no mass
at the vertices of the kernel. Part (c) is immediate from Lemma 18, and (d) and (e) are immediate
from Lemma 19 and Theorem 3.

Proof of Theorem 8. Theorem 8 (a) is precisely the identity (9), and (b) follows from the second
part of Lemma 12, Lemma 19 and Theorem 3.

Finally, as mentioned earlier, the validity of Procedure 1 is a consequence of Theorems 6 and 8.

References

[1] L. Addario-Berry, N. Broutin, and C. Goldschmidt. The continuum limit of critical random
graphs. arXiv:0903.4730v1 [math.PR], 2009+.

[2] D. Aldous. The continuum random tree. I. Ann. Probab., 19(1):1–28, 1991. ISSN 0091-1798.
MR1085326

772

http://www.ams.org/mathscinet-getitem?mr=1085326


[3] D. Aldous. The continuum random tree. II. An overview. In Stochastic analysis (Durham,
1990), volume 167 of London Math. Soc. Lecture Note Ser., pages 23–70. Cambridge University
Press, Cambridge, 1991. MR1166406

[4] D. Aldous. The continuum random tree. III. Ann. Probab., 21(1):248–289, 1993. ISSN 0091-
1798. MR1207226

[5] D. Aldous. Recursive self-similarity for random trees, random triangulations and Brownian
excursion. Ann. Probab., 22(2):527–545, 1994. ISSN 0091-1798. MR1288122

[6] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent.
Ann. Probab., 25:812–854, 1997. MR1434128

[7] D. Aldous and J. Pitman. Brownian bridge asymptotics for random mappings. Random Struc-
tures Algorithms, 5(4):487–512, 1994. ISSN 1042-9832. MR1293075

[8] D. Aldous, G. Miermont, and J. Pitman. Weak convergence of random p-mappings and the ex-
ploration process of inhomogeneous continuum random trees. Probability Theory and Related
Fields, 133(1):1–17, 2005. MR2197134

[9] D.J. Aldous. Exchangeability and related topics. In École d’été de probabilités de Saint-Flour,
XIII, volume 1117, pages 1–198, Berlin, 1983. Springer. MR0883646

[10] K. B. Athreya and P. E. Ney. Branching processes. Dover Publications Inc., Mineola, NY,
2004. ISBN 0-486-43474-5. Reprint of the 1972 original [Springer, New York; MR0373040].
MR0373040

[11] J. Bertoin and C. Goldschmidt. Dual random fragmentation and coagulation and an application
to the genealogy of Yule processes. In Mathematics and computer science. III, Trends Math.,
pages 295–308. Birkhäuser, Basel, 2004. MR2090520

[12] J. Bertoin and J. Pitman. Path transformations connecting Brownian bridge, excursion and
meander. Bull. Sci. Math., 118(2):147–166, 1994. ISSN 0007-4497. MR1268525

[13] D. Blackwell and D. G. Kendall. The Martin boundary for Pólya’s urn scheme, and an applica-
tion to stochastic population growth. J. Appl. Probab., 1:284–296, 1964. MR0176518

[14] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cambridge Uni-
versity Press, second edition, 2001. MR1864966

[15] L. Chaumont and M. Yor. Exercises in probability, volume 13 of Cambridge Series in Statis-
tical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2003. ISBN 0-
521-82585-7. A guided tour from measure theory to random processes, via conditioning.
MR2016344

[16] B. de Finetti. Funzione caratteristica di un fenomeno aleatorio. Atti della R. Academia
Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale, 4:
251—299, 1931.

[17] J. Ding, J.H. Kim, E. Lubetzky, and Y. Peres. Anatomy of a young giant component in the
random graph. arXiv:0906.1839v1 [math.CO], 2009.

773

http://www.ams.org/mathscinet-getitem?mr=1166406
http://www.ams.org/mathscinet-getitem?mr=1207226
http://www.ams.org/mathscinet-getitem?mr=1288122
http://www.ams.org/mathscinet-getitem?mr=1434128
http://www.ams.org/mathscinet-getitem?mr=1293075
http://www.ams.org/mathscinet-getitem?mr=2197134
http://www.ams.org/mathscinet-getitem?mr=0883646
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=2090520
http://www.ams.org/mathscinet-getitem?mr=1268525
http://www.ams.org/mathscinet-getitem?mr=0176518
http://www.ams.org/mathscinet-getitem?mr=1864966
http://www.ams.org/mathscinet-getitem?mr=2016344


[18] D. Dufresne. Algebraic properties of beta and gamma distributions, and applications. Adv.
Appl. Math., 20:285–299, 1998. MR1618423

[19] F. Eggenberger and G. Pólya. Uber die Statistik verketteter Vorgange. Zeitschrift fur Angewandte
Mathematik und Mechanik, 3:279–289, 1923.
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