187 research outputs found

    The Source Detection of 28 September 2018 Sulawesi Tsunami by Using Ionospheric GNSS Total Electron Content Disturbance

    Get PDF
    The 28 September 2018 magnitude Mw7.8 Palu, Indonesia earthquake (0.178° S, 119.840° E, depth 13 km) occurred at 10:02 UTC. The major earthquake triggered catastrophic liquefaction, landslides, and a near-field tsunami. The ionospheric total electron content (TEC) derived from records of 5 ground-based global navigation satellite system (GNSS) receivers is employed to detect tsunami traveling ionospheric disturbances (TTIDs). In total, 15 TTIDs have been detected. The ray-tracing and beamforming techniques are then used to find the TTID source location. The bootstrap method is applied in order to further explore the possible location of the tsunami source based on results of the two techniques, which show the beamforming technique has a slightly better performance on finding possible locations of the tsunami source. Meanwhile, the circle method is employed to examine tsunami signatures of the sea-surface height and video records, and find possible tsunami origin locations. The coincidence of the TTID source location and the tsunami location shows that the ionospheric TEC recorded by local ground-based GNSS receivers can be used to confirm the tsunami occurrence, find the tsunami location, and support the tsunami early warning

    Number of Courses, Content of Coursework, and Prior Achievement as Related to Ethnic Achievement Gaps in Mathematics

    Get PDF
    This study utilized base-year and second follow-up data from the National Educational Longitudinal Study of 1988 to investigate the relationship between eighth-grade math achievement, mathematics course-taking in high school, and twelfth-grade math achievement. Results suggested the following: 1) Type of coursework can be quantified. 2) Type of coursework was more predictive of achievement than amount. 3) There were substantial ethnic achievement differences prior to high school. 4) Number of courses, type of courses, and prior achievement were not equally predictive of twelfth-grade mathematics achievement across ethnic groups. 5) Prior achievement did not equally predict course-taking over ethnic groups in amount or type. 6) Closing ethnic achievement gaps will be a function of efforts taken before high school as well as high school coursework

    \psi(2S) Decays into \J plus Two Photons

    Full text link
    Using \gamma \gamma J/\psi, J/\psi \ra e^+ e^- and μ+μ\mu^+ \mu^- events from a sample of 14.0×10614.0\times 10^6 \psip decays collected with the BESII detector, the branching fractions for \psip\ra \pi^0\J, \eta\J, and \psi(2S)\ar\gamma\chi_{c1},\gamma\chi_{c2}\ar\gamma\gamma\jpsi are measured to be B(\psip\ra \pi^0\J) = (1.43\pm0.14\pm0.13)\times 10^{-3}, B(\psip\ra \eta\J) = (2.98\pm0.09\pm0.23)%, B(\psi(2S)\ar\gamma\chi_{c1}\ar\gamma\gamma\jpsi) = (2.81\pm0.05\pm 0.23)%, and B(\psi(2S)\ar\gamma\chi_{c2}\ar\gamma\gamma\jpsi) = (1.62\pm0.04\pm 0.12)%.Comment: 7 pages, 6 figures. submitted to Phys. Rev.

    Integration, Launch, and First Results from IDEASSat/INSPIRESat-2 - A 3U CubeSat for Ionospheric Physics and Multi-National Capacity Building

    Get PDF
    The Ionospheric Dynamics and Attitude Subsystem Satellite (IDEASSat) is a 3U CubeSat carrying a Compact Ionospheric Probe (CIP) to detect ionospheric irregularities that can impact the usability and accuracy of global satellite navigation systems (GNSS), as well as satellite and terrestrial over the horizon communications. The spacecraft was developed by National Central University (NCU) in Taiwan, with additional development and operational support from partners in the International Satellite Program in Science and Education (INSPIRE) consortium. The spacecraft system needed to accommodate these mission objectives required three axis attitude control, dual band communications capable of supporting both tracking, telemetry and command (TT&C) and science data downlink, as well as flight software and ground systems capable of supporting the autonomous operation and short contact times inherent to a low Earth orbit mission developed on a limited university budget with funding agency-imposed constraints. As the first spacecraft developed at NCU, lessons learned during the development, integration, and operation of IDEASSat have proven to be crucial to the objective of developing a sustainable small satellite program. IDEASSat was launched successfully on January 24, 2021 aboard the SpaceX Falcon 9 Transporter 1 flight. and successfully began operations, demonstrating power, thermal, and structural margins, as well as validation of uplink and downlink communications functionality, and autonomous operation. A serious anomaly occurred after 22 days on orbit when communication with the spacecraft were abruptly lost. Communication was re-established after 1.5 months for sufficient time to downlink stored flight data, which allowed the cause of the blackout to be identified to a high level of confidence and precision. In this paper, we will report on experiences and anomalies encountered during the final flight model integration and delivery, commissioning, and operations. The agile support from the international amateur radio community and INSPIRE partners were extremely helpful in this process, especially during the initial commissioning phase following launch. It is hoped that the lessons learned reported here will be helpful for other university teams working to develop spaceflight capacity

    On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data

    Get PDF
    The Holo-Hilbert spectral analysis (HHSA) method is introduced to cure the deficiencies of traditional spectral analysis and to give a full informational representation of nonlinear and non-stationary data. It uses a nested empirical mode decomposition and Hilbert–Huang transform (HHT) approach to identify intrinsic amplitude and frequency modulations often present in nonlinear systems. Comparisons are first made with traditional spectrum analysis, which usually achieved its results through convolutional integral transforms based on additive expansions of an a priori determined basis, mostly under linear and stationary assumptions. Thus, for non-stationary processes, the best one could do historically was to use the time–frequency representations, in which the amplitude (or energy density) variation is still represented in terms of time. For nonlinear processes, the data can have both amplitude and frequency modulations (intra-mode and inter-mode) generated by two different mechanisms: linear additive or nonlinear multiplicative processes. As all existing spectral analysis methods are based on additive expansions, either a priori or adaptive, none of them could possibly represent the multiplicative processes. While the earlier adaptive HHT spectral analysis approach could accommodate the intra-wave nonlinearity quite remarkably, it remained that any inter-wave nonlinear multiplicative mechanisms that include cross-scale coupling and phase-lock modulations were left untreated. To resolve the multiplicative processes issue, additional dimensions in the spectrum result are needed to account for the variations in both the amplitude and frequency modulations simultaneously. HHSA accommodates all the processes: additive and multiplicative, intra-mode and inter-mode, stationary and non-stationary, linear and nonlinear interactions. The Holo prefix in HHSA denotes a multiple dimensional representation with both additive and multiplicative capabilities

    Serological Evidence of Subclinical Transmission of the 2009 Pandemic H1N1 Influenza Virus Outside of Mexico

    Get PDF
    Background: Relying on surveillance of clinical cases limits the ability to understand the full impact and severity of an epidemic, especially when subclinical cases are more likely to be present in the early stages. Little is known of the infection and transmissibility of the 2009 H1N1 pandemic influenza (pH1N1) virus outside of Mexico prior to clinical cases being reported, and of the knowledge pertaining to immunity and incidence of infection during April-June, which is essential for understanding the nature of viral transmissibility as well as for planning surveillance and intervention of future pandemics. Methodology/Principal Findings: Starting in the fall of 2008, 306 persons from households with schoolchildren in central Taiwan were followed sequentially and serum samples were taken in three sampling periods for haemagglutination inhibition (HI) assay. Age-specific incidence rates were calculated based on seroconversion of antibodies to the pH1N1 virus with an HI titre of 1: 40 or more during two periods: April-June and September-October in 2009. The earliest time period with HI titer greater than 40, as well as a four-fold increase of the neutralization titer, was during April 26-May 3. The incidence rates during the pre-epidemic phase (April-June) and the first wave (July-October) of the pandemic were 14.1% and 29.7%, respectively. The transmissibility of the pH1N1 virus during the early phase of the epidemic, as measured by the effective reproductive number R(0), was 1.16 (95% confidence interval (CI): 0.98-1.34). Conclusions: Approximately one in every ten persons was infected with the 2009 pH1N1 virus during the pre-epidemic phase in April-June. The lack of age-pattern in seropositivity is unexpected, perhaps highlighting the importance of children as asymptomatic transmitters of influenza in households. Although without virological confirmation, our data raise the question of whether there was substantial pH1N1 transmission in Taiwan before June, when clinical cases were first detected by the surveillance network

    Sumoylation of Hypoxia-Inducible Factor-1α Ameliorates Failure of Brain Stem Cardiovascular Regulation in Experimental Brain Death

    Get PDF
    One aspect of brain death is cardiovascular deregulation because asystole invariably occurs shortly after its diagnosis. A suitable neural substrate for mechanistic delineation of this aspect of brain death resides in the rostral ventrolateral medulla (RVLM). RVLM is the origin of a life-and-death signal that our laboratory detected from blood pressure of comatose patients that disappears before brain death ensues. At the same time, transcriptional upregulation of heme oxygenase-1 in RVLM by hypoxia-inducible factor-1α (HIF-1α) plays a pro-life role in experimental brain death, and HIF-1α is subject to sumoylation activated by transient cerebral ischemia. It follows that sumoylation of HIF-1α in RVLM in response to hypoxia may play a modulatory role on brain stem cardiovascular regulation during experimental brain death.A clinically relevant animal model that employed mevinphos as the experimental insult in Sprague-Dawley rat was used. Biochemical changes in RVLM during distinct phenotypes in systemic arterial pressure spectrum that reflect maintained or defunct brain stem cardiovascular regulation were studied. Western blot analysis, EMSA, ELISA, confocal microscopy and immunoprecipitation demonstrated that drastic tissue hypoxia, elevated levels of proteins conjugated by small ubiquitin-related modifier-1 (SUMO-1), Ubc9 (the only known conjugating enzyme for the sumoylation pathway) or HIF-1α, augmented sumoylation of HIF-1α, nucleus-bound translocation and enhanced transcriptional activity of HIF-1α in RVLM neurons took place preferentially during the pro-life phase of experimental brain death. Furthermore, loss-of-function manipulations by immunoneutralization of SUMO-1, Ubc9 or HIF-1α in RVLM blunted the upregulated nitric oxide synthase I/protein kinase G signaling cascade, which sustains the brain stem cardiovascular regulatory machinery during the pro-life phase.We conclude that sumoylation of HIF-1α in RVLM ameliorates brain stem cardiovascular regulatory failure during experimental brain death via upregulation of nitric oxide synthase I/protein kinase G signaling. This information should offer new therapeutic initiatives against this fatal eventuality

    MicroRNAs Differentially Expressed in Postnatal Aortic Development Downregulate Elastin via 3′ UTR and Coding-Sequence Binding Sites

    Get PDF
    Elastin production is characteristically turned off during the maturation of elastin-rich organs such as the aorta. MicroRNAs (miRNAs) are small regulatory RNAs that down-regulate target mRNAs by binding to miRNA regulatory elements (MREs) typically located in the 3′ UTR. Here we show a striking up-regulation of miR-29 and miR-15 family miRNAs during murine aortic development with commensurate down-regulation of targets including elastin and other extracellular matrix (ECM) genes. There were a total of 14 MREs for miR-29 in the coding sequences (CDS) and 3′ UTR of elastin, which was highly significant, and up to 22 miR-29 MREs were found in the CDS of multiple ECM genes including several collagens. This overrepresentation was conserved throughout mammalian evolution. Luciferase reporter assays showed synergistic effects of miR-29 and miR-15 family miRNAs on 3′ UTR and coding-sequence elastin constructs. Our results demonstrate that multiple miR-29 and miR-15 family MREs are characteristic for some ECM genes and suggest that miR-29 and miR-15 family miRNAs are involved in the down-regulation of elastin in the adult aorta
    corecore