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Abstract

Up to 40% of patients undergoing breast conserving surgery for breast cancer require repeat 

surgeries due to close to or positive margins. The lengthy processing required for evaluating 

surgical margins by standard paraffin embedded histology precludes its use during surgery and 

therefore, technologies for rapid evaluation of surgical pathology could improve the treatment of 

breast cancer by reducing the number of surgeries required. We demonstrate real-time histological 

evaluation of breast cancer surgical specimens by staining specimens with acridine orange (AO) 

and sulforhodamine 101 (SR101) analogously to hematoxylin and eosin (H&E) and then imaging 

the specimens with fluorescence nonlinear microscopy (NLM) using a compact femtosecond fiber 

laser. A video-rate computational light absorption model was used to produce realistic virtual 

H&E images of tissue in real time and in three dimensions. NLM imaging could be performed to 

depths of 100 µm below the tissue surface, which is important since many surgical specimens 

require subsurface evaluation due to artifacts on the tissue surface from electrocautery, surgical ink 

or debris from specimen handling. We validate this method by expert review of NLM images 

compared to formalin fixed, paraffin embedded (FFPE) H&E histology. Diagnostically important 

features such as normal terminal ductal lobular units, fibrous and adipose stromal parenchyma, 

inflammation, invasive carcinoma, and in-situ lobular and ductal carcinoma were present in NLM 

images associated with pathologies identified on standard FFPE H&E histology. We demonstrate 

that AO and SR101 were extracted to undetectable levels after FFPE processing and fluorescence 

in situ hybridization (FISH) HER2 amplification status was unaffected by the NLM imaging 
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protocol. This method potentially enables cost-effective, real-time histological guidance of 

surgical resections.

INTRODUCTION

Breast cancer is the second most common form of malignancy in American women, with 

over 300,000 cases diagnosed annually 1. The standard of care for early-stage breast cancer 

is breast conserving therapy (BCT) which includes surgery to remove the tumor followed by 

adjuvant radiation therapy and possibly chemotherapy to eradicate residual disease 1, 2. 

Unfortunately, due to the difficulty assessing tumor margins during surgery and the desire to 

conserve breast tissue for aesthetic outcome, up to 40% of all women who receive BCT 

require repeat surgeries due to positive or close margins 3–8, resulting in increased morbidity, 

worsened cosmetic outcomes, delayed radiotherapy and greatly increased healthcare costs. 

Formalin fixed, paraffin embedded hematoxylin and eosin (FFPE H&E) histopathology is 

the gold standard for evaluating breast surgical margins, however, the multi-hour processing 

time of fixation, embedding, microtoming and staining, precludes rapid evaluation of 

histology. Frozen section analysis (FSA) enables rapid tissue processing and evaluation, but 

has reduced accuracy when compared to standard FFPE H&E and is particularly challenging 

in fatty tissue due to freezing artifacts and physical sectioning difficulties 9, 10. Furthermore, 

both of these techniques are labor-intensive, resulting in substantial pressure from both the 

Centers for Medicare and Medicaid Services and private insurers to control costs 11.

Therefore, new technologies for rapid and cost-effective histological evaluation of surgical 

pathology could improve breast cancer treatment, while reducing health care costs by 

reducing re-excision rates. Optical sectioning microscopy enables rapid, high resolution 

imaging of freshly excised tissue specimens by imaging a selected narrow depth range 

within tissue without requiring physical sectioning on a microtome 12. Confocal 

fluorescence microscopy (CFM) 13–17, structured illumination microscopy (SIM) 18, 19, 

stimulated Raman scattering 20, and nonlinear microscopy (NLM) 21–23 have all been 

reported to enable optical sectioning and histological evaluation of pathology in freshly 

excised, unfixed tissue without microtoming. Of these methods, NLM is uniquely attractive 

because nonlinear fluorescent excitation enables high resolution imaging through overlaying 

tissue, blood or cellular debris into surgical specimens at extremely high imaging rates 

relative to other methods. Furthermore, recent studies have demonstrated a high rate of 

concordance with conventional paraffin embedded histopathology for the evaluation of 

breast surgical specimens 21.

Unfortunately, NLM typically requires femtosecond Titanium:Sapphire (Ti:S) lasers, which 

are large, fragile, expensive, and require regular maintenance. Alternatively, a few previous 

works have used high power amplified fiber laser systems 24, 25, which are more compact, 

but still relatively costly. A more cost-effective alternative is to use lower power, unamplified 

femtosecond ytterbium fiber lasers that operate at 1 µm wavelengths. These lasers are widely 

used for industrial applications because of their low cost, compact size, and excellent 

reliability, important requirements for an intraoperative diagnostic tool. Furthermore, a 1 µm 

wavelength is advantageous because there is less signal attenuation than for shorter 
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wavelengths, enabling deeper imaging into tissue 26–28 analogous to serial sectioned 

histology. Subsurface imaging is important in intraoperative scenarios where the specimen 

surfaces typically have contamination due to electrocautery, surgical ink or debris from 

specimen handling, making pathologies difficult to visualize.

Reproducing the established diagnostic features of H&E stained tissue using fluorescence 

NLM requires nuclear specific contrast with stromal counterstaining analogous to 

hematoxylin and eosin. These fluorescent stains must be spectrally separable from each 

other to discriminate between structures, rapidly penetrate live tissue, avoid interference 

with subsequent histological processing or assays, and be cost-effective. 4’,6-diamidino-2-

phenylindole (DAPI), a blue nuclear fluorophore, has been used with eosin, a strong red 

fluorophore, to provide H&E-like contrast in fluorescence microscopy 29, however, two 

photon excitation of DAPI requires shorter wavelengths (two photon excitation maximum at 

~0.7 µm) and therefore cannot be used with inexpensive ytterbium fiber lasers. Acridine 

orange (AO) is a common nuclear stain that has been used in CFM 30, SIM 19, and NLM 21. 

AO rapidly binds to DNA, has a broad absorption spectrum and high quantum yield. Second 

harmonic generation (SHG) 21 and eosin 31 have been combined with AO to provide stromal 

contrast, however, the former requires high incident powers and has poor specificity for 

eosinophilic structures and the latter overlaps emission spectra with AO making separation 

of signal complicated. Sulforhodamine 101 (SR101) is a low cost, red fluorescent fluorone 

stain with a structure closely related to that of eosin. SR101 stains cytosol and collagen 

similarly to eosin 32 and rapidly penetrates through live tissue. Furthermore, the red 

emission makes it spectrally-separable from AO, while the large two photon absorption at 1 

µm lowers laser power requirements.

In this work, we describe a technique for rapid histological evaluation of freshly excised, 

unfixed breast tissue specimens using fluorescence NLM with a compact, low cost fiber 

laser (Figure 1). A rapid staining procedure using AO and SR101 generates images 

analogous to FFPE H&E slides at video-rate (16 frames per second). We demonstrate that 

the fluorescent stains are extracted to undetectable levels by standard tissue processing using 

a commercial histology processor (ethanol dehydration followed by xylene) and do not 

affect HER2 amplification status via fluorescent in situ hybridization (FISH) assay. We 

present a comparative study of freshly excised, unfixed breast tissue pathology using virtual 

H&E nonlinear microscope images and standard FFPE H&E.

MATERIALS AND METHODS

Tissue preparation

To demonstrate rapid imaging for real-time histological evaluation of breast tissue, breast 

tissue not required for diagnostic purposes was collected from patients undergoing 

mastectomy or lumpectomy. All research was performed according to protocols approved by 

Massachusetts Institute of Technology Committee on the Use of Humans as Experimental 

Subjects and Beth Israel Deaconess Medical Center Committee on Clinical Investigations 

and Institutional Review Board. The requirement for informed consent was waived by both 

committees because specimens were de-identified discarded human tissue, not required for 

clinical diagnosis.
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Unfixed, inked surgical specimens were procured within hours of surgery, dissected to reveal 

representative pathology and stained in a solution of 160 µM AO and 65 µM SR101 

dissolved in 1:1 water: ethanol for 2 minutes, then rinsed in 1:1 water: ethanol for 20 

seconds. The 1:1 water: ethanol solution for staining is necessary to prevent the 

crystallization of SR101 that occurs when AO and SR101 are mixed together in pure water. 

With a 2-minute staining time, AO and SR101 penetrated up to 400 µm from the surface into 

the tissue, although staining times as short as 30 seconds enable deep volumetric NLM 

imaging (Figure S1). The stained specimens were transferred to a modified histology 

processing cassette with a glass coverslip on the front to provide a flat imaging surface for 

NLM. After NLM imaging, the specimens were fixed in 10% (vol/vol) neutral buffered 

formalin while immobilized against the coverslip to maintain tissue orientation of the 

imaged surface, then processed, paraffin embedded, physically sectioned, and stained with 

H&E. The H&E slides were scanned and linearly scaled to match the size of the freshly 

excised, unfixed tissue (as recorded by optical encoders on the NLM precision microscope 

stage prior to fixation) to account for minor tissue deformation (< 10%) due to paraffin 

embedding and microtoming.

Image acquisition

Figure 1 shows a schematic diagram of the NLM instrument. The light source was a 1.03 µm 

wavelength ytterbium fiber laser (Origami-10, OneFive, Regensdorf, Switzerland) 

generating 170 fs pulses at 100 MHz repetition rate. The laser beam was scanned with an 8 

kHz resonant scanner (16 kHz bi-directional line scan rate) and a perpendicular 

galvanometer scanner through a 20X, 1.0 NA water immersion objective (XLUMPFL20XW 

1.0 NA, Olympus, Tokyo, Japan). The incident average power was ≤65 mW on the specimen 

and the fluorescent emission light from the AO and SR101 was collected with a dichroic 

beam splitter (DBS) (590 nm cutoff) and directed to two photomultiplier tubes (PMT; 

H7422-40p, Hamamatsu, Japan). An additional 540±20 nm bandpass filter was used in the 

AO channel to reduce autofluorescence. 1024 × 1024 pixel frames with a 490 µm × 490 µm 

field of view were acquired at 16 frames per second and mosaicked by a linear motor 

translating stage (MLS203, Thorlabs, NJ, USA). Images at planes below the specimen 

surface could be acquired by adjusting the objective focus.

Image processing

Fluorescent NLM images were rendered into an H&E color display using a computer 

algorithm called virtual trans-illumination microscopy (VTM) 33. In VTM, the concentration 

of dye or fluorophore is estimated based on the fluorescence intensity and converted to a 

transillumination absorption using the Beer-Lambert law, which relates dye concentration to 

absorption. This enables physically realistic rendering of epi-detected NLM images as FFPE 

transillumination H&E images in real time and at video rate 33, enabling the microscope to 

be operated like a conventional histological microscope. However, to compare NLM images 

to FFPE H&E slide images, frames from each specimen location were recorded with 10-fold 

averaging at constant magnification and then stitched into mosaic images to create large 

field of view single plane images at a given depth below the specimen surface. This process 

takes approximately 4.75 seconds per mm2, which is an artificially long delay and only 

required for comparison to FFPE H&E sections. In a clinical setting, the instrument would 
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be operated in real-time mode analogously to a conventional histological microscope, 

without requiring mosaicking.

Reading and analysis

NLM and corresponding FFPE H&E images were read by experienced breast pathologists 

(HV, JLC) to assess if features on NLM required for diagnosing breast cancer were visible 

and to confirm that NLM images do not exhibit artifacts which confound diagnosis.

RESULTS

Normal human breast tissue

Figure 2 shows (a) an NLM image and (b) a corresponding FFPE H&E slide of normal 

breast tissue. Characteristic features of normal breast tissue were seen on both the NLM and 

FFPE H&E images. Within the tissue, terminal duct lobular units (TDLUs) in the NLM 

images (Fig. 2, green and Fig. 2 brown) and the FFPE H&E images (Fig. 2, blue and Fig. 2, 

orange) show clear correspondence. Individual acini (NLM: Fig. 2, yellow; FFPE H&E: Fig. 

2 pink) and larger nonterminal ducts (NLM: Fig. 2, purple; FFPE H&E: Fig. 2 gray) are 

identifiable on NLM and match the FFPE H&E image. Areas of normal adipocytes and 

collagen are both clear in NLM and FFPE H&E (inset in green and blue and in Fig. 2a and 

b, respectively).

Invasive ductal carcinoma

Invasive ductal carcinoma (IDC) accounts for more than three quarters of all breast 

cancers 34. IDC is diagnosed when cancer cells break through the basement membrane of 

ducts and infiltrate the surrounding breast stroma. This pathology is characterized by 

malignant cells with variable prominent glandular structures infiltrating the breast 

parenchyma. Figure 3 shows (a) an NLM image with (b) a corresponding FFPE H&E image 

of an IDC specimen. Areas of malignant cells can be seen in the NLM images (Fig. 3, green) 

and FFPE H&E images (Fig. 3, blue) with areas of hyalinized stroma. Both images show 

infiltrating nests and glands of malignant cells, characteristic of IDC (NLM: yellow; FFPE 

H&E: pink). There are inflamed vessels (Fig. 3, NLM: brown; FFPE H&E: orange) 

indicated by an increase in the endothelial cell size and an exudative infiltrate of 

lymphocytes. In the NLM image, like the FFPE H&E image, typical malignant cell features, 

such as irregular shape and size of cells are evident.

Invasive lobular carcinoma

Invasive lobular carcinoma (ILC) is the second most common histological type of breast 

cancer 35. ILC begins in lobules of the breast and invades the surrounding stroma. Figure 4 

shows an (a) NLM image and (b) a corresponding FFPE H&E image of ILC. Classic ILC 

patterns of invasive lobular malignant cells infiltrating the surrounding breast stroma in a 

single file pattern are seen in the corresponding NLM (Fig. 4, purple and brown) and the 

FFPE H&E images (Fig. 4, blue and orange). The single file strands of malignant cells are 

highlighted in the inset of Fig. 4 outlined in yellow (NLM) and pink (FFPE H&E). 

Additionally, inflammatory infiltrates of lymphocytes, a typical response to a disease 
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process such as cancer, along with a cross-sectional cut through a vessel, can be seen in 

NLM (Fig. 4, green) and FFPE H&E (Fig. 4, gray).

NLM at multiple depths for serial optical sectioning

NLM can generate images at different depths in tissue which are analogous to serial 

sectioned histology, decreasing the requirements on specimen flatness during imaging and 

enabling imaging through tissue surface artifacts due to electrocautery or debris from 

specimen handling. Figure 5 shows images acquired at multiple depths to 100 µm below the 

tissue surface acquired with a constant laser power and detector gain. The detector gain was 

optimized for surface imaging. Digital gain in post processing was applied to the frames to 

match the average frame intensity throughout the stack of frames. This data shows that even 

with constant laser power and gain, it is possible to visualize tissue features 100 µm below 

the tissue surface.

Extraction of AO and SR101 during histological processing

Both SR101 and AO have high solubility in typical histology solvents such as ethanol and 

xylene and are expected to be extracted during processing. To assess the extraction of SR101 

and AO as the result of routine histological processing, representative specimens of freshly 

excised, unfixed breast tissue were divided in half. The transected face of one half was 

stained with AO and SR101, while the matching face was unstained. The tissue was then 

fixed in formalin and processed using standard tissue processing on a vacuum infiltrating 

processor (VIP) (Tissue Tek VIP 5, Sakura, CA, USA). The last tissue processing step is 

paraffin infiltration, however, paraffin is highly optically scattering, while infiltration 

produces geometric distortion of tissue. For purposes of comparison, the VIP was 

programmed to terminate prior to the paraffinization step (Table S1). To provide images of 

unstained control tissue for comparison, second harmonic generation (SHG) contrast 

generated with an 800 nm Ti:S laser was used to image tissue without staining.

NLM images acquired with the same laser power and detector gain of the stained and 

unstained halves of the tissue are shown in Figure 6a prior to tissue processing 

(fluorescence: column 1, SHG: column 2) and after tissue processing (fluorescence: column 

3, SHG: column 4). No fluorescence signal is detectable after tissue processing. The SHG 

images before and after tissue processing confirm that the images were acquired at roughly 

the same depth plane. Higher magnification regions of Figure 6a are shown in Figure 6b. 

Additionally, Figure 6b shows images acquired with 20x higher detector gain. These images 

show a small amount of background autofluorescence, primarily from weak green 

fluorescent emission of collagen fibers. Within the background fluorescence, no nuclei are 

discernable. Enlarging a region with nuclei prior to processing shows a weak uniform signal 

due to autofluorescence leakage into the AO channel rather than the intensity spikes due to 

bound AO seen in the images acquired before processing (Fig. 6c). Figure S3 shows the 

fluorescence spectrum of xylene used to process AO-stained tissue compared to a reference 

spectrum of AO taken before processing, indicating that xylene extracts AO from tissue 

without quenching AO fluorescence.
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The reduction in fluorescent signal can be quantified by taking the ratio of the median 

normalized pixel intensities of the tissue before and after tissue processing for each dataset 

and each channel (Table S2). We found that the autofluorescence from the tissue is ~1,300 

times lower than the AO-stained nuclei in the AO channel and ~12,800 times lower than the 

SR101 stained tissue in the SR101 channel. Because AO-stained nuclei are not present in the 

tissue after processing, we conclude that the intensity of AO staining is at least 1,300 times 

less than before tissue processing and the intensity of SR101 staining is at least 12,800 times 

less than before tissue processing. This reduction represents an upper bound on the 

maximum possible residual fluorescent signal that can be quantified given the 

autofluorescent background, however, since no residual nuclei can be observed even in 

regions with no apparent collagen, it is likely that the actual reduction is substantially higher.

Verification of noninterference with fluorescence in situ hybridization

To verify that extraction of AO and SR101 would enable HER2/neu FISH assays of 

fluorescently stained tissue, representative specimens of freshly excised, unfixed breast 

tissue were divided in half. One half was stained with the AO and SR101 protocol described 

earlier while the other was left unstained as a control. The tissue was then processed for 

standard FISH and examined by a trained pathologist (Figure S4). The ratio of HER2:CEP 

17 signals was calculated to be approximately 1 for both the treated and control tissue, 

which is negative for HER2 amplification. AO and SR101 fluorescence was not detectable in 

the FISH and there were no observable differences between the control and AO/SR101 

stained tissue specimens.

DISCUSSION

NLM is attractive for intraoperative evaluation of pathology because it can optically section 

thick tissue, eliminating the labor-intensive and time-consuming embedding and physical 

sectioning step required for both paraffin sections and FSA, enabling real-time histological 

evaluation of excised tissue to guide surgery. NLM has been demonstrated to achieve high 

sensitivity and specificity for discrimination of normal and malignant breast tissue 21. 

Furthermore, the use of fluorescent contrast agents has several advantages, including rapid 

staining of live tissue, high NLM imaging speeds, high contrast, and, using the protocol 

described here, low fluorophore cost and compatibility with subsequent histological 

processing. However, the widespread use of fluorescence imaging and optical sectioning for 

histological evaluation of breast surgical pathology has been limited by substantial 

differences in the appearance of fluorescence images from standard FFPE H&E images, lack 

of suitable fluorescent contrast agents, high cost and complexity of lasers, and concerns 

about interference with subsequent diagnostics following fluorescent stained. In this report, 

we have overcome these limitations and developed a protocol for NLM fluorescent nuclear 

staining with stromal counterstaining, combined with a VTM rendering algorithm 33 to 

generate video rate virtual H&E images of freshly excised, unfixed tissue.

The study of representative breast surgical specimens presented here demonstrates a high 

degree of correspondence between FFPE H&E and real-time NLM for normal breast tissue 

and common types of breast carcinoma. Review by pathologists with expertise in breast 
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cancer pathologies confirmed that diagnostically important features such as normal TDLUs 

(including benign individual acini and ducts) and normal fibrous and adipose stromal 

parenchyma, inflammation and biopsy site changes, invasive carcinoma with infiltrating 

nests, glands and singly or single filing of malignant cells as well as in-situ lobular and 

ductal carcinoma are present in NLM images associated with pathologies identified on 

standard FFPE H&E histology. Despite minor differences between NLM and FFPE images 

such as geometric distortion and tissue shrinkage during to fixation and physical sectioning, 

previous work has shown that NLM has near-equivalent sensitivity to conventional 

histology, indicating that minor differences in artifacts do not significantly impact 

interpretation of breast pathology 21. Further, quantitative image analysis of paraffin tissue 

sections indicates that both AO and SR101 have an extremely high degree of colocalization 

with hematoxylin and eosin, respectively (Figure S5, Table S3), indicating that our stains are 

a good approximation of conventional H&E stains. Future clinical studies will be required to 

demonstrate improvements in surgical outcomes, however, the results presented here 

strongly suggest that NLM can provide diagnostic information equivalent to FFPE H&E 

histology.

This manuscript demonstrates that stains enabling near-equivalent images to standard 

paraffin embedded histology can be rapidly applied to tissue and then extracted to 

undetectable levels by standard histological processing. Intraoperative assessment of breast 

tissue margins using the proposed protocol requires treating diagnostically relevant tissue 

with fluorescent stains. It is therefore important to minimize any impact on the tissue 

characteristics to prevent interference or reduced testing accuracy in subsequent 

immunohistochemical, fluorescent in situ hybridization or other genetic tests that are 

necessary to maintain standards of patient care. A key advantage of the proposed protocol is 

that the fluorescent agents are selected to be highly soluble in conventional histology 

solvents. SR101, like eosin, is weakly bound to the tissue and highly soluble in methanol 

and is therefore extracted during formalin fixation. The less alcohol soluble AO is retained 

during fixation and dehydration, but extracted during xylene rinsing. The ability to apply 

stains and then extract them to undetectable levels using standard processing methods that 

are already validated for IHC and genetic assays is essential to incorporating advanced 

nonlinear imaging techniques into existing clinical workflows.

An advance towards clinical translation of fluorescence NLM presented in this manuscript is 

the replacement of complex, tunable Ti:S lasers with unamplified fixed-wavelength fiber 

lasers by selecting contrast agents compatible with low power, 1 µm excitation. While heroic 

efforts have been made to operate Ti:S lasers in the clinic 36, these systems are large and 

fragile, require regular maintenance, active cooling, vibration isolation, substantial warm-up 

time which precludes their use in routine clinical practice. In contrast, fiber lasers are 

compact and robust, do not require regular maintenance, cooling, vibration isolation and 

power on rapidly. Consequently, system complexity, size, weight and cost are all greatly 

reduced. For example, the femtosecond fiber laser used here only occupies 12” × 4” × 4” 

space and although the benchtop microscope used for this study occupies an additional 24” 

× 30” × 20”, the fiber laser technology is small enough to enable NLM microscopes of 

comparable size to conventional light microscopes.
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Another major advantage of NLM imaging at 1 µm wavelength is the increased light 

penetration and imaging depth in tissue compared with NLM at shorter wavelengths or 

confocal microscopy (Figure S2). Combined with rapid fluorescent stains with good tissue 

permeation, operation at 1 µm enables visualization of tissue up to 100 µm from the surface 

without adjusting incident power or detector gain, equivalent to 25 serial paraffin sections 

(Figure 5) without the processing delay and expense associated with taking sequential 

paraffin sections. The operator is able to view subsurface features in different regions of 

interest by panning and adjusting focal depth to evaluate the three dimensional structure of 

tissue in real time. In conventional breast histology, sequential serial paraffin sections are 

rarely taken due to the cost and time required to prepare and evaluate sequential slides. The 

ability to easily evaluate pathology in 3D is therefore unique to optical sectioning and may 

enable improved diagnostic sensitivity.

The ability to image below the surface of specimens may also be an important for 

intraoperative breast surgery applications because tissue surfaces often have contamination 

artifacts. Surgical tissue specimens typically have electrocautery, loose or displaced cells 

from excision or grossing, strongly fluorescent fibers from gauze, paper tissue or cutting 

boards, and other foreign material on the tissue surfaces. This are not be present on FFPE 

H&E slides due to the tissue processing and microtoming which removes surface 

contaminants. Imaging modalities such as confocal microscopy have limited imaging range 

below tissue surfaces which may limit their diagnostic effectiveness in the presence of 

surface contamination. NLM can perform subsurface imaging to avoid surface 

contamination artifacts which can be especially important for evaluating areas of dense, 

highly scattering cells such as in IDC.

In addition to the morbidity and the patient distress associated with incomplete resection and 

repeat surgeries, the cost of breast cancer treatment increases with each additional surgery, 

resulting in a substantial economic burden 37–39. Consequently, there is currently a shift 

towards a value-based insurance payment method to incentivize increased quality of care, 

for example, reducing hospital readmissions, in order to control costs 40. The adoption of 

methods to assess margins intraoperatively promises to enable a reduction in the treatment 

cost while improving patient outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The method for processing and evaluating breast tissue using the rapid staining and imaging 

technology. Stain: Freshly excised, unfixed tissue was stained in an acridine orange (AO), 

sulforhodamine 101 (SR101) solution and rinsed of excess stain using a 50% ethanol/50% 

water solution. Image: The light source, an ytterbium fiber laser, was scanned on to the 

sample through a 20X objective (OBJ) with resonant and non-resonant galvanometer 

actuated mirrors (scan unit). Fluorescent light from the specimen was separated from the two 

photon excitation light via a dichroic beam splitter (DBS) and further separated into 

components of fluorescent emission from AO and SR101 via a second DBS. Light was 
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collected using a photomultiplier tube (PMT) for each channel. The PMT channels were 

rendered as virtual H&E images on a graphics processing unit (GPU) and displayed in real 

time. (MR: Mirror). Evaluate according to standard-of-care: Stained tissue was formalin 

fixed and underwent standard paraffin embedded histology processing using a commercial 

tissue processor (Tissue Tek VIP 5, Sakura, CA, USA), which includes ethanol dehydration, 

xylene rinsing, and paraffin infiltration. The standard processing extracted AO and SR101 to 

levels undetectable with NLM microscopy. Subsequent tissue evaluation can be performed 

in order to guide treatment and assess surgical outcome.
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Fig. 2. 
Normal human breast tissue. (a) NLM and (b) FFPE H&E histology images (500 µm scale 

bar). Normal TDLUs (NLM: green and brown box; FFPE H&E: blue and orange box) (250 

µm scale bar), individual acini (NLM: yellow box; FFPE H&E: pink box) (50 µm scale bar) 

and larger ducts (NLM: brown box; FFPE H&E: gray box) (250 µm scale bar) are shown 

magnified. NLM: https://slide-atlas.org/link/zmhbwg. FFPE H&E: https://slide-atlas.org/

link/noazj9.
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Fig. 3. 
Human breast tissue showing invasive ductal carcinoma. (a) NLM and (b) FFPE H&E 

images (500 µm scale bar). Malignant cells are shown in the NLM (green) and FFPE H&E 

images (blue) (250 µm scale bar) infiltrating the breast stroma, with a high power view 

shown in yellow (NLM) and pink (FFPE H&E) (50 µm scale bar); inflamed vessels with a 

lymphocytic infiltrate are shown in brown (NLM) and orange (FFPE H&E) (250 µm scale 

bar). NLM: https://slide-atlas.org/link/tfdr77. FFPE H&E: https://slide-atlas.org/link/zatgkv.

Cahill et al. Page 15

Lab Invest. Author manuscript; available in PMC 2018 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://slide-atlas.org/link/tfdr77
https://slide-atlas.org/link/zatgkv


Fig. 4. 
Human breast tissue showing invasive lobular carcinoma. (a) NLM image of freshly excised, 

unfixed human breast tissue with evident ILC and (b) corresponding FFPE H&E histology 

(500 µm scale bar). Many individual rows of malignant cells are in the NLM (purple and 

brown) and FFPE H&E images (blue and orange) (250 µm scale bar). A high power view of 

the ILC single file pattern is shown in yellow (NLM) and pink (FFPE H&E) (100 µm scale 

bar). A corresponding lymphocytic infiltration in the NLM and FFPE H&E images is shown 

in green and gray, respectively (250 µm scale bar). NLM: https://slide-atlas.org/link/ghg3vq. 

FFPE H&E: https://slide-atlas.org/link/h7vtjp.
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Fig. 5. 
A 500×500×100 µm three-dimensional stack of NLM images demonstrating imaging at 

different depths in normal breast tissue. The volumetric reconstruction shows image data 

from the surface to 100 µm deep with digital gain applied to the images in post processing to 

match the average frame intensity without changing incident laser power or detector gain 

(scalebars: 100 µm). Selected NLM images from 25 µm, 50 µm, 75 µm, and 100 µm depths 

are shown.
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Fig. 6. 
AO and SR101 are washed out to undetectable levels after standard tissue processing. (a) 
NLM fluorescent and SHG images before (first and second column) and after (third and 

fourth column) fixation and standard tissue processing of stained and unstained tissue. 

(Scale bars: 0.5 mm). (b) High magnification fluorescent images of select areas of (a) before 

processing (left), after processing (center), and after processing with 20 times the detector 

gain (right) (scalebars: 50 µm) (c) A representative plot of the normalized average intensity 

of the AO channel from a frame in (b) before processing and after processing at 20X 

detector gain. The spikes in the ‘stained’ tissue correspond to fluorescence emitted from AO 

in nuclei. There are no corresponding spikes in the ‘after wash’ graph and instead, there is a 

uniform background fluorescent signal present.
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