98 research outputs found

    Mapping the potential use of endectocide-treated cattle to reduce malaria transmission

    Get PDF
    Treating cattle with endectocide is a longstanding veterinary practice to reduce the load of endo and ectoparasites, but has the potential to be added to the malaria control and elimination toolbox, as it also kills malaria mosquitoes feeding on the animals. Here we used openly available data to map the areas of the African continent where high malaria prevalence in 2-10 year old children coincides with a high density of cattle and high density of the partly zoophilic malaria vector Anopheles arabiensis. That is, mapping the areas where treating cattle with endectocide would potentially have the greatest impact on reducing malaria transmission. In regions of Africa that are not dominated by rainforest nor desert, the map shows a scatter of areas in several countries where this intervention shows potential, including central and eastern sub-Saharan Africa. The savanna region underneath the Sahel in West Africa appears as the climatic block that would benefit to the largest extent from this intervention, encompassing several countries. West Africa currently presents the highest under-10 malaria prevalence and elimination within the next twenty years cannot be contemplated there with currently available interventions alone, making the use of endectocide treated cattle as a complementary intervention highly appealing

    Safety of oral ivermectin during pregnancy: a systematic review and meta-analysis

    Get PDF
    Background: About 3·7 billion doses of ivermectin have been distributed in mass drug administration (MDA) campaigns globally over the past 30 years. At 10–100 times higher than current human doses, ivermectin is a known teratogen in mammals. During these campaigns with recommended doses, pregnant women might be inadvertently exposed. We therefore aimed to evaluate the existing evidence for serious and non-serious adverse events after ivermectin exposure in pregnant women. Methods: For this systematic review and meta-analysis, we searched relevant databases and trial registry platforms on July 15, 2018, for randomised controlled trials (RCTs) and observational studies that reported adverse events in pregnant women. We did not use language or date restrictions. Outcomes of interest were spontaneous abortions, stillbirths, congenital anomalies, and neonatal death (serious adverse events), as well as maternal morbidity, preterm births, and low birthweight (adverse events). The risk of bias was assessed using the Newcastle-Ottawa Scale for observational studies and the Cochrane Risk of Bias Tool for RCTs. We did the meta-analysis of observational studies and RCTs separately. The quality of evidence was assessed using the GRADE approach. The study protocol is registered with PROSPERO, protocol CRD42016046914. Findings: We identified 147 records, of which only five observational studies and one RCT were included for quantitative analysis; these studies were published between 1990 and 2008, and were done in six African countries. 893 women with 899 pregancy outcomes were included, of whom 496 pregnant women (500 pregnancy outcomes) received ivermectin inadvertently during MDA campaigns in the observational studies and 397 pregnant women (399 pregnancy outcomes) purposely received ivermectin as part of the open-label RCT. No study reported neonatal deaths, maternal morbidity, preterm births, or low birthweight. It is unclear whether exposure to ivermectin during pregnancy increases the risk of spontaneous abortions and stillbirths (odds ratio [OR] 1·15 [95% CI 0·75–1·78] with very low certainty of evidence for the four observational studies and 0·62 [0·18–2·14] with very low certainty of evidence for the RCT) or congenital anomalies (OR 1·69 [95% CI 0·83–3·41] with very low certainty of evidence for the five observational studies and 1·10 [0·07–17·65] with very low certainty of evidence for the RCT). Interpretation: There is insufficient evidence to conclude on the safety profile of ivermectin during pregnancy. Treatment campaigns should focus additional efforts on preventing inadvertent treatment of pregnant women

    Combination of indoor residual spraying with long-lasting insecticide-treated nets for malaria control in Zambezia, Mozambique: a cluster randomised trial and cost-effectiveness study protocol.

    Get PDF
    Background: Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. Methods: A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6-59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. Discussion: By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies. Trial registration number: NCT02910934

    Establishment of the Ivermectin Research for Malaria Elimination Network: updating the research agenda

    Get PDF
    The potential use of ivermectin as an additional vector control tool is receiving increased attention from the malaria elimination community, driven by the increased importance of outdoor/residual malaria transmission and the threat of insecticide resistance where vector tools have been scaled-up. This report summarizes the emerging evidence presented at a side meeting on "Ivermectin for malaria elimination: current status and future directions" at the annual meeting of the American Society of Tropical Medicine and Hygiene in New Orleans on November 4, 2014. One outcome was the creation of the "Ivermectin Research for Malaria Elimination Network" whose main goal is to establish a common research agenda to generate the evidence base on whether ivermectin-based strategies should be added to the emerging arsenal to interrupt malaria transmission

    Ivermectin as a novel complementary malaria control tool to reduce incidence and prevalence: a modelling study

    Get PDF
    BACKGROUND: Ivermectin is a potential new vector control tool to reduce malaria transmission. Mosquitoes feeding on a bloodmeal containing ivermectin have a reduced lifespan, meaning they are less likely to live long enough to complete sporogony and become infectious. We aimed to estimate the effect of ivermectin on malaria transmission in various scenarios of use. METHODS: We validated an existing population-level mathematical model of the effect of ivermectin mass drug administration (MDA) on the mosquito population and malaria transmission against two datasets: clinical data from a cluster- randomised trial done in Burkina Faso in 2015 wherein ivermectin was given to individuals taller than 90 cm and entomological data from a study of mosquito outcomes after ivermectin MDA for onchocerciasis or lymphatic filariasis in Burkina Faso, Senegal, and Liberia between 2008 and 2013. We extended the existing model to include a range of complementary malaria interventions (seasonal malaria chemoprevention and MDA with dihydroartemisinin-piperaquine) and to incorporate new data on higher doses of ivermectin with a longer mosquitocidal effect. We consider two ivermectin regimens: a single dose of 400 μg/kg (1 × 400 μg/kg) and three consecutive daily doses of 300 μg/kg per day (3 × 300 μg/kg). We simulated the effect of these two doses in a range of usage scenarios in different transmission settings (highly seasonal, seasonal, and perennial). We report percentage reductions in clinical incidence and slide prevalence. FINDINGS: We estimate that MDA with ivermectin will reduce prevalence and incidence and is most effective in areas with highly seasonal transmission. In a highly seasonal moderate transmission setting, three rounds of ivermectin only MDA at 3 × 300 μg/kg (rounds spaced 1 month apart) and 70% coverage is predicted to reduce clinical incidence by 71% and prevalence by 34%. We predict that adding ivermectin MDA to seasonal malaria chemoprevention in this setting would reduce clinical incidence by an additional 77% in children younger than 5 years compared with seasonal malaria chemoprevention alone; adding ivermectin MDA to MDA with dihydroartemisinin-piperaquine in this setting would reduce incidence by an additional 75% and prevalence by an additional 64% (all ages) compared with MDA with dihydroartemisinin-piperaquine alone. INTERPRETATION: Our modelling predictions suggest that ivermectin could be a valuable addition to the malaria control toolbox, both in areas with persistently high transmission where existing interventions are insufficient and in areas approaching elimination to prevent resurgence. FUNDING: Imperial College Junior Research Fellowship

    Lymphatic Filariasis Control in Tanzania: Effect of Six Rounds of Mass Drug Administration with Ivermectin and Albendazole on Infection and Transmission.

    Get PDF
    Control of lymphatic filariasis (LF) in most countries of sub-Saharan Africa is based on annual mass drug administration (MDA) with a combination of ivermectin and albendazole, in order to interrupt transmission. We present findings from a detailed study on the effect of six rounds of MDA with this drug combination as implemented by the National Lymphatic Filariasis Elimination Programme (NLFEP) in a highly endemic rural area of north-eastern Tanzania.\ud The effect of treatment on transmission and human infection was monitored in a community- and a school-based study during an 8-year period (one pre-intervention and 7 post-intervention years) from 2003 to 2011. Before intervention, 24.5% of the community population had microfilariae (mf) in the blood, 53.3% had circulating filarial antigens (CFA) and 78.9% had specific antibodies to the recombinant filarial antigen Bm14. One year after the sixth MDA, these values had decreased considerably to 2.7%, 19.6% and 27.5%, respectively. During the same period, the CFA prevalence among new intakes of Standard 1 pupils in 10 primary schools decreased from 25.2% to 5.6%. In line with this, transmission by the three vectors (Anopheles gambiae, An. funestus and Culex quinquefasciatus) as determined by dissection declined sharply (overall vector infectivity rate by 99.3% and mean monthly transmission potential by 99.2% between pre-intervention and fifth post-intervention period). A major shift in vector species composition, from predominantly anopheline to almost exclusively culicine was observed over the years. This may be largely unrelated to the MDAs but may have important implications for the epidemiology of LF in the area. Six MDAs caused considerable decrease in all the measured indices for transmission and human infection. In spite of this, indices were still relatively high in the late period of the study, and it may take a long time to reach the recommended cut-off levels for interruption of transmission unless extra efforts are made. These should include increased engagement of the target population in the control activities, to ensure higher treatment coverage. It is expected that the recent initiative to distribute insecticide impregnated bed nets to every household in the area will also contribute towards reaching the goal of successful LF elimination

    Acoustic surveillance of cough for detecting respiratory disease using artificial intelligence

    Get PDF
    Research question Can smartphones be used to detect individual and population-level changes in cough frequency that correlate with the incidence of coronavirus disease 2019 (COVID-19) and other respiratory infections? Methods This was a prospective cohort study carried out in Pamplona (Spain) between 2020 and 2021 using artificial intelligence cough detection software. Changes in cough frequency around the time of medical consultation were evaluated using a randomisation routine; significance was tested by comparing the distribution of cough frequencies to that obtained from a model of no difference. The correlation between changes of cough frequency and COVID-19 incidence was studied using an autoregressive moving average analysis, and its strength determined by calculating its autocorrelation function (ACF). Predictors for the regular use of the system were studied using a linear regression. Overall user experience was evaluated using a satisfaction questionnaire and through focused group discussions. Results We followed-up 616 participants and collected >62 000 coughs. Coughs per hour surged around the time cohort subjects sought medical care (difference +0.77 coughs.h(-1); p=0.00001). There was a weak temporal correlation between aggregated coughs and the incidence of COVID-19 in the local population (ACF 0.43). Technical issues affected uptake and regular use of the system. Interpretation Artificial intelligence systems can detect changes in cough frequency that temporarily correlate with the onset of clinical disease at the individual level. A clearer correlation with population-level COVID-19 incidence, or other respiratory conditions, could be achieved with better penetration and compliance with cough monitoring

    The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: A pilot, double-blind, placebo-controlled, randomized clinical trial.

    Get PDF
    Background Ivermectin inhibits the replication of SARS-CoV-2 in vitro at concentrations not readily achievable with currently approved doses. There is limited evidence to support its clinical use in COVID-19 patients. We conducted a Pilot, randomized, double-blind, placebo-controlled trial to evaluate the efficacy of a single dose of ivermectin reduce the transmission of SARS-CoV-2 when administered early after disease onset. Methods Consecutive patients with non-severe COVID-19 and no risk factors for complicated disease attending the emergency room of the Clínica Universidad de Navarra between July 31, 2020 and September 11, 2020 were enrolled. All enrollments occurred within 72 h of onset of fever or cough. Patients were randomized 1:1 to receive ivermectin, 400 mcg/kg, single dose (n = 12) or placebo (n = 12). The primary outcome measure was the proportion of patients with detectable SARS-CoV-2 RNA by PCR from nasopharyngeal swab at day 7 post-treatment. The primary outcome was supported by determination of the viral load and infectivity of each sample. The differences between ivermectin and placebo were calculated using Fisher's exact test and presented as a relative risk ratio. This study is registered at ClinicalTrials.gov: NCT04390022. Findings All patients recruited completed the trial (median age, 26 [IQR 19-36 in the ivermectin and 21-44 in the controls] years; 12 [50%] women; 100% had symptoms at recruitment, 70% reported headache, 62% reported fever, 50% reported general malaise and 25% reported cough). At day 7, there was no difference in the proportion of PCR positive patients (RR 0·92, 95% CI: 0·77-1·09, p = 1·0). The ivermectin group had non-statistically significant lower viral loads at day 4 (p = 0·24 for gene E; p = 0·18 for gene N) and day 7 (p = 0·16 for gene E; p = 0·18 for gene N) post treatment as well as lower IgG titers at day 21 post treatment (p = 0·24). Patients in the ivermectin group recovered earlier from hyposmia/anosmia (76 vs 158 patient-days; p < 0.001). Interpretation Among patients with non-severe COVID-19 and no risk factors for severe disease receiving a single 400 mcg/kg dose of ivermectin within 72 h of fever or cough onset there was no difference in the proportion of PCR positives. There was however a marked reduction of self-reported anosmia/hyposmia, a reduction of cough and a tendency to lower viral loads and lower IgG titers which warrants assessment in larger trials. Funding ISGlobal, Barcelona Institute for Global Health and Clínica Universidad de Navarra

    Ivermectin as a novel complementary malaria control tool to reduce incidence and prevalence: a modelling study.

    Get PDF
    BACKGROUND: Ivermectin is a potential new vector control tool to reduce malaria transmission. Mosquitoes feeding on a bloodmeal containing ivermectin have a reduced lifespan, meaning they are less likely to live long enough to complete sporogony and become infectious. We aimed to estimate the effect of ivermectin on malaria transmission in various scenarios of use. METHODS: We validated an existing population-level mathematical model of the effect of ivermectin mass drug administration (MDA) on the mosquito population and malaria transmission against two datasets: clinical data from a cluster- randomised trial done in Burkina Faso in 2015 wherein ivermectin was given to individuals taller than 90 cm and entomological data from a study of mosquito outcomes after ivermectin MDA for onchocerciasis or lymphatic filariasis in Burkina Faso, Senegal, and Liberia between 2008 and 2013. We extended the existing model to include a range of complementary malaria interventions (seasonal malaria chemoprevention and MDA with dihydroartemisinin-piperaquine) and to incorporate new data on higher doses of ivermectin with a longer mosquitocidal effect. We consider two ivermectin regimens: a single dose of 400 μg/kg (1 × 400 μg/kg) and three consecutive daily doses of 300 μg/kg per day (3 × 300 μg/kg). We simulated the effect of these two doses in a range of usage scenarios in different transmission settings (highly seasonal, seasonal, and perennial). We report percentage reductions in clinical incidence and slide prevalence. FINDINGS: We estimate that MDA with ivermectin will reduce prevalence and incidence and is most effective in areas with highly seasonal transmission. In a highly seasonal moderate transmission setting, three rounds of ivermectin only MDA at 3 × 300 μg/kg (rounds spaced 1 month apart) and 70% coverage is predicted to reduce clinical incidence by 71% and prevalence by 34%. We predict that adding ivermectin MDA to seasonal malaria chemoprevention in this setting would reduce clinical incidence by an additional 77% in children younger than 5 years compared with seasonal malaria chemoprevention alone; adding ivermectin MDA to MDA with dihydroartemisinin-piperaquine in this setting would reduce incidence by an additional 75% and prevalence by an additional 64% (all ages) compared with MDA with dihydroartemisinin-piperaquine alone. INTERPRETATION: Our modelling predictions suggest that ivermectin could be a valuable addition to the malaria control toolbox, both in areas with persistently high transmission where existing interventions are insufficient and in areas approaching elimination to prevent resurgence. FUNDING: Imperial College Junior Research Fellowship
    corecore