534 research outputs found

    Symbiont diversity is not involved in depth acclimation in the Mediterranean sea whip Eunicella singularis

    Get PDF
    In symbiotic cnidarians, acclimation to depth and lower irradiance can involve physiological changes in the photosynthetic dinoflagellate endosymbiont, such as increased chlorophyll content, or qualitative modifications in the symbiont population in favour of better adapted strains. It has been argued that a lack of capacity to acquire new symbionts could limit the bathymetric distribution of the host species, or compromise its long-term survival in a changing environment. But is that always true? To address this question, we investigated the symbiont genetic diversity in Eunicella singularis, a Mediterranean sea whip species with a wide bathymetric distribution (10 to 50 m depth), which has recently suffered from mass mortalities after periods of abnormally high sea temperatures. We measured symbiont population densities and chlorophyll content in natural populations, and followed the response of the holobionts after reciprocal transplantations to deep and shallow depths. A total of 161 colonies were sampled at 2 depths (10 and 30 m) at 5 sites in the northwestern Mediterranean. All colonies harboured a single ribosomal Symbiodinium clade (A'), but a relatively high within-clade genetic diversity was found among and within colonies. This diversity was not structured by depth, even though the deeper colonies contained significantly lower population densities of symbionts and less chlorophyll. We did, however, reveal host-symbiont specificity among E. singularis and other Mediterranean cnidarian species. Transplantation experiments revealed a limit of plasticity for symbiont population density and chlorophyll content, which in turn questions the importance of the trophic role of Symbiodinium in E. singularis

    Red coral extinction risk enhanced by ocean acidification

    Get PDF
    The red coral Corallium rubrum is a habitat-forming species with a prominent and structural role in mesophotic habitats, which sustains biodiversity hotspots. This precious coral is threatened by both over-exploitation and temperature driven mass mortality events. We report here that biocalcification, growth rates and polyps’ (feeding) activity of Corallium rubrum are significantly reduced at pCO2 scenarios predicted for the end of this century (0.2 pH decrease). Since C. rubrum is a long-living species (.200 years), our results suggest that ocean acidification predicted for 2100 will significantly increases the risk of extinction of present populations. Given the functional role of these corals in the mesophotic zone, we predict that ocean acidification might have cascading effects on the functioning of these habitats worldwid

    An updated overview of the geographic and bathymetric distribution of Savalia savaglia

    Get PDF
    The distribution of gold coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data, collected using a ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BD Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats. Considering its longevity and structural role, it is urgent to develop an effective protection measure for S. savaglia, thereby increasing research efforts and implementing protection areas for this species

    An updated overview of the geographic and bathymetric distribution of Savalia savaglia

    Get PDF
    The distribution of gold coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data, collected using a ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BD Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats. Considering its longevity and structural role, it is urgent to develop an effective protection measure for S. savaglia, thereby increasing research efforts and implementing protection areas for this species

    Macrofaunal communities in the Gioia Canyon (Southern Tyrrhenian Sea, Italy)

    Get PDF
    Submarine canyons play pivotal roles in the physical, biological and ecological processes of coastal areas, especially in closed or semi-closed basins as the Mediterranean Sea, influencing the biodiversity and the abundance of the benthic fauna. On February 2013, during the Tyrrhenian Gravity Flows (TyGraF) campaign, samples have been collected along the Gioia Canyon Basin (Italy) with the aim to describe the taxonomical composition and the abundances of the macrobenthic assemblages, filling the gap of knowledge in this area. A total of 93 taxa were identified, and the Annelida was the phylum with the highest number of specimens and most diversified (46 taxa). The polychaetes Sternaspis scutata, Prionospio cirrifera and Monticellina sp., the bivalves Thyasira sp.1 and Saccella commutata and the amphipods belonging to the genera Ampelisca and Harpinia showed the highest densities in the studied area; however, results suggest low values of the abundances of the macrobenthos if compared with those generally reported for other canyons, both inside and outside the Mediterranean Sea. The marine biotic index (AMBI) highlights that the canyon system and the surrounded area were slightly disturbed and characterized by a high percentage of tolerant taxa. This study is the first baseline for future analyses of the macrobenthic communities of this area

    The coral assemblage of an off-shore deep Mediterranean rocky bank (NW Sicily, Italy)

    Get PDF
    In this study we characterized the deep assemblages dwelling at 200–250 m depth on a large shoal off Capo St. Vito Promontory (Northwestern coast of Sicily, South Tyrrhenian Sea) by means of ROV-imaging. Two assemblages of suspension feeders, dominated by the gorgonian Callogorgia verticillata and by the black coral Leiopathes glaberrima, together with a tanatocoenosis of the colonial yellow scleractinian coral Dendrophyllia cornigera, were examined. The three main species were significatively distributed into two areas corresponding to different habitat preferences: a more elevated hardground hosting black corals and a gently sloping, silted rocky bottom hosting the other coral species. The study area is subjected to a heavy pressure from the professional fishery, resulting in the mechanical damage of numerous colonies, some of which are then overgrown by various epibionts including a parasitic bioluminescent zoanthid, new for the Mediterranean fauna, and tentatively identified as Isozoanthus primoidus. In the Mediterranean Sea, these deep off-shore rocky banks are widely known among recreational and professional fishermen due to their rich fish fauna. However, there has been still little effort into quantifying and characterizing the extent of the impact and its consequences on the benthic communities, which may represent, as in this case, only a partial picture of their original structure and extent

    Comparison between the sponge fauna living outside and inside the coralligenous bioconstruction. A quantitative approach

    Get PDF
    Coralligenous habitat results from a multi-stratified accumulation of crustose coralline algae and animal builders in a dynamic equilibrium with disruptive agents. The result is a complex architecture crossed by crevices and holes. Due to this three-dimensional structure, coralligenous may host a rich and diversified fauna, more abundant than any other Mediterranean habitat. Unfortunately, very few data are available about the cryptic fauna that lives inside the conglomerate. As already reported for coral reefs, the cryptic fauna plays an important role in the exchange of material and energy between water column and benthic assemblages. Here we compare the sponge community present inside and outside the coralligenous framework of Portofino Promontory (Ligurian Sea) at different depths (15 and 30 meters) not only in terms of taxonomic diversity but for the first time also in term of biomass. Sponges present on the surface of each block were collected, weighed and identified; after blocks dissolution in HCl, target cryptic sponges were separated from other organisms, weighed, and identified. We recorded a total of 62 sponge species. The average number of sponge taxa occurring outside the coralligenous accretions is lower than the number of taxa identified inside. This pattern is confirmed also regarding sponge biomass. These results underlines that studies focused on coralligenous functioning should take in account the important contribution of cryptic fauna, as recently evidenced also for tropical reef habitats

    A Roadmap for the Restoration of Mediterranean Macroalgal Forests

    Get PDF
    Canopy-forming macroalgae play a crucial role in coastal primary production and nutrient cycling, providing food, shelter, nurseries, and habitat for many vertebrate and invertebrate species. However, macroalgal forests are in decline in various places and natural recovery is almost impossible when populations become locally extinct. Hence, active restoration emerges as the most promising strategy to rebuild disappeared forests. In this regard, significant efforts have been made by several EU institutions to research new restoration tools for shallow and mesophotic reef habitats (e.g., MERCES EU project, AFRIMED, and ROCPOP-life) and effective techniques have subsequently been proposed to promote self-sustaining populations. Recent research indicates that macroalgal forest recovery requires a broad spectrum of measures, ranging from mitigating human impacts to restoring the most degraded populations and habitats, and that the viability of large restoration actions is compromised by ongoing human pressures (e.g., pollution, overgrazing, and climate change). We propose a roadmap for Mediterranean macroalgal restoration to assist researchers and stakeholders in decision-making, considering the most effective methods in terms of cost and cost-effectiveness, and taking background environmental conditions and potential threats into account. Last, the challenges currently faced by the restoration of rocky coastal ecosystems under changing climate conditions are also discussed
    corecore