746 research outputs found
Entrainment in two coalescing axisymmetric turbulent plumes
AbstractA model of the total volume flux and entrainment occurring in two coalescing axisymmetric turbulent plumes is developed and compared with laboratory experiments. The dynamical evolution of the two plumes is divided into three regions. In region 1, where the plumes are separate, the entrainment in each plume is unaffected by the other plume, although the two plumes are drawn together due to the entrainment of ambient fluid between them. In region 2 the two plumes touch each other but are not yet merged. In this region the total entrainment is a function of both the dynamics of the touching plumes and the reduced surface area through which entrainment occurs. In region 3 the two plumes are merged and the entrainment is equivalent to that in a single plume. We find that the total volume flux after the two plumes touch and before they merge increases linearly with distance from the sources, and can be expressed as a function of the known total volume fluxes at the touching and merging heights. Finally, we define an ‘effective’ entrainment constant, , as the value of needed to obtain the same total volume flux in two independent plumes as that occurring in two coalescing plumes. The definition of allows us to find a single expression for the development of the total volume flux in the three different dynamical regions. This single expression will simplify the representation of coalescing plumes in more complex models, such as in large-scale geophysical convection, in which plume dynamics are not resolved. Experiments show that the model provides an accurate measure of the total volume flux in the two coalescing plumes as they evolve through the three regions.The authors gratefully acknowledge the National Science Foundation (Grant OCE-
0824636) and the Office of Naval Research (Grant N00014-09-1-0844) for their support
of the 2013 WHOI Geophysical Fluid Dynamics Summer School where this project was
initiated. Support to CC was given by the National Science Foundation project OCE-
1130008. CC wishes to thank Jason Hyatt for improving the clarity of this manuscript.This is the author accepted manuscript. The final version is available from CUP at http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=9300855&fileId=S0022112014003899
The relationship between flux coefficient and entrainment ratio in density currents
Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2713–2727, doi:10.1175/2010JPO4225.1.The authors explore the theoretical and empirical relationship between the nonlocal quantities of the entrainment ratio E, the appropriately depth- and time-averaged flux coefficient Γ, and the bulk Froude number Fro in density currents. The main theoretical result is that E = 0.125 Γ Fro2(CU3/CL)/cosθ, where θ is the angle of the slope over which the density current flows, CL is the ratio the turbulent length scale to the depth of the density current, and CU is the ratio of the turbulent velocity scale to the mean velocity of the density current. In the case of high bulk Froude numbers Γ Fro−2 and (CU3/CL) = Cϵ 1, so E 0.1, consistent with observations of a constant entrainment ratio in unstratified jets and weakly stratified plumes. For bulk Froude numbers close to one, Γ is constant and has a value in the range of 0.1–0.3, which means that E Fro2, again in agreement with observations and previous experiments. For bulk Froude numbers less than one, Γ decreases rapidly with bulk Froude number, explaining the sudden decrease in entrainment ratios that has been observed in all field and experimental observations.Support for MGW was provided
by NSERC, the Canadian Foundation for Innovation,
the Ontario Research Fund, and the Connaught Committee
of the University of Toronto. CPC gratefully acknowledges
the hospitality and support of the 2008
Summer Study Program in Geophysical Fluid Dynamics
at Woods Hole Oceanographic Institution, where this
project was initiated
NUMERICAL STUDY OF A CAPACITIVE TOMOGRAPHY SYSTEM FOR MULTIPHASE FLOW
This paper presents the development of a capacitive tomography system applied to the study of multiphase flows. A numerical analysis, through the finite elements method, was performed to obtain data for the optimization ofthe geometry of the capacitance sensor. The image reconstruction of several flow patterns was obtained through the method of linear back projection, allowing the verification of the influence of several parameters upon the quality of the images, making its application easier in an experimental procedure. Several numerical simulations were performed for air-water flow, for the stratified and annular patterns. A resource of cut-off level, which depends of previous knowledge of the liquid fraction, was implemented in a way to improve the quality of the reconstructed images. The results obtained for several values of void fraction and for different patterns of flow, demonstrate the validity of the developed tomographic system
Laboratory experiments on two coalescing axisymmetric turbulent plumes in a rotating fluid
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Institute of Physics for personal use, not for redistribution. The definitive version was published in Physics of Fluids 23 (2011): 056601, doi:10.1063/1.3584134.We investigate the early-time coalescence of two co-flowing axisymmetric turbulent plumes and the later-time flow of the induced vortices in a rotating, homogeneous fluid using laboratory experiments. The experiments demonstrate the critical importance of the rotation period Tf = 2π/f, where f is the Coriolis parameter of the background rotation. We find that if the plumes’ sources are sufficiently “close” for the plumes to merge initially at an “early time” tm≲tr = 3Tf/4, the experimentally observed merging height zme agrees well with the non-rotating theoretical relationship of zmt ≈ (0.44/α)x0tr, however, the flow dynamics are substantially more complicated, as the flow becomes significantly affected by rotation. The propagation and entrainment of the plumes becomes strongly affected by the vortices induced by the entrainment flow in a rotating environment. Also, the plume fluid itself starts to interact with these vortices. If the plumes have already initially merged by the time t = tr, a single vortex (initially located at the midpoint of the line connecting the two plume sources) develops, which both advects and modifies the geometry of the merging plumes. Coupled with the various suppressing effects of rotation on the radial plume entrainment, the “apparent” observed height of merger can vary substantially from its initial value. Conversely, for more widely separated “distant” plumes, where x0>xc = (25α/2)F01/4f-3/4, the plumes do not merge before the critical time tr when rotation becomes significant in the flow dynamics and two vortices are observed, each located over a plume source. The combined effect of these vortices with the associated suppression of entrainment by rotation thus significantly further delays the merger of the two plumes, which apparently becomes possible only through the merger of the induced vortices.This work was supported by the Center for Planetary Science
Vegetation cover analysis using a low budget hyperspectral proximal sensing system
This report describes the implementation of a hyperspectral proximal sensing low-budget acquisition system and
its application to the detection of terrestrian vegetation cover anomalies in sites of high environmental quality.
Anomalies can be due to stress for lack of water and/or pollution phenomena and weed presence in agricultural
fields. The hyperspectral cube (90-bands ranging from 450 to 900 nm) was acquired from the hill near Segni
(RM), approximately 500 m far from the target, by means of electronically tunable filters and 8 bit CCD cameras.
Spectral libraries were built using both endmember identification method and extraction of centroids of the
clusters obtained from a k-means analysis of the image itself. Two classification methods were applied on the
hyperspectral cube: Spectral Angle Mapper (hard) and Mixed Tuned Matching Filters (MTMF). Results show
the good capability of the system in detecting areas with an arboreal, shrub or leafage cover, distinguishing between
zones with different spectral response. Better results were obtained using spectral library originated by the
k-means method. The detected anomalies not correlated to seasonal phenomena suggest a ground true analysis
to identify their origin
A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements
The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a 'black box' algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements
Transient behavior of through-flowing gravity currents interacting with a roughness array
We present laboratory experiments that investigate the structure and flow characteristics of grav ity currents travelling through an array of roughness elements. The roughness elements are of
comparable height to the gravity current such that the current flows through the roughness array
rather than over it. The frontal velocity and density structure are measured as the current tran sitions from flowing along a smooth bed to flowing through the roughness array, and then back to
a smooth bed. We find that, upon entering the roughness array, the gravity current decelerates
and the density structure changes from the head and tail structure typical of smooth bed gravity
currents, to a wedge shape. A model is presented that explains the deceleration and change in shape
based on a dynamic balance between a pressure gradient within the current tail and a drag force
associated with individual roughness elements. This model accurately predicts the deceleration of
the gravity current, supporting the proposed dynamic balance
Efficacy of Conventional and Organic Insecticides against Scaphoideus titanus: Field and Semi-Field Trials
Scaphoideus titanus is the main vector of phytoplasmas associated with Flavescence dorée (FD), one of the most serious threats to viticulture in many European countries. To minimize the spread of this disease, mandatory control measures against S. titanus were decided in Europe. In the 1990s, the repeated application of insecticides (mainly organophosphates) proved to be an effective measure to control the vector and the related disease in north-eastern Italy. These insecticides and most of the neonicotinoids were recently banned from European viticulture. Serious FD issues detected in the recent years in northern Italy could be related to the use of less effective insecticides. Trials aimed at evaluating the efficacy of the most used conventional and organic insecticides in the control of S. titanus have been performed in semi-field and field conditions to test this hypothesis. In efficacy trials, carried out in four vineyards, etofenprox and deltamethrin proved to be the best conventional insecticides, while pyrethrins were the most impactful among organic insecticides. Insecticide residual activity was evaluated in semi-field and field conditions. Acrinathrin showed the most significant residual effects in both conditions. In semi-field trials, most of the pyrethroids were associated with good results in terms of residual activity. However, these effects declined in field conditions, probably due to high temperatures. Organic insecticides showed poor results in terms of residual efficacy. Implications of these results in the context of Integrated Pest Management in conventional and organic viticulture are discussed
Experimental study of Taylor's hypothesis in a turbulent soap film
An experimental study of Taylor's hypothesis in a quasi-two-dimensional
turbulent soap film is presented. A two probe laser Doppler velocimeter enables
a non-intrusive simultaneous measurement of the velocity at spatially separated
points. The breakdown of Taylor's hypothesis is quantified using the cross
correlation between two points displaced in both space and time; correlation is
better than 90% for scales less than the integral scale. A quantitative study
of the decorrelation beyond the integral scale is presented, including an
analysis of the failure of Taylor's hypothesis using techniques from
predictability studies of turbulent flows. Our results are compared with
similar studies of 3D turbulence.Comment: 27 pages, + 19 figure
- …