181 research outputs found

    Regularization of 2d supersymmetric Yang-Mills theory via non commutative geometry

    Get PDF
    The non commutative geometry is a possible framework to regularize Quantum Field Theory in a nonperturbative way. This idea is an extension of the lattice approximation by non commutativity that allows to preserve symmetries. The supersymmetric version is also studied and more precisely in the case of the Schwinger model on supersphere [14]. This paper is a generalization of this latter work to more general gauge groups

    Hilbert Space Representation of an Algebra of Observables for q-Deformed Relativistic Quantum Mechanics

    Full text link
    Using a representation of the q-deformed Lorentz algebra as differential operators on quantum Minkowski space, we define an algebra of observables for a q-deformed relativistic quantum mechanics with spin zero. We construct a Hilbert space representation of this algebra in which the square of the mass p2 p^2 is diagonal.Comment: 13 pages, LMU-TPW 94-

    Operator Representations on Quantum Spaces

    Full text link
    In this article we present explicit formulae for q-differentiation on quantum spaces which could be of particular importance in physics, i.e., q-deformed Minkowski space and q-deformed Euclidean space in three or four dimensions. The calculations are based on the covariant differential calculus of these quantum spaces. Furthermore, our formulae can be regarded as a generalization of Jackson's q-derivative to three and four dimensions.Comment: 34 pages, Latex, major modifications to improve clarity, corrected typo

    Gravity on a fuzzy sphere

    Get PDF
    We propose an action for gravity on a fuzzy sphere, based on a matrix model. We find striking similarities with an analogous model of two dimensional gravity on a noncommutative plane, i.e. the solution space of both models is spanned by pure U(2) gauge transformations acting on the background solution of the matrix model, and there exist deformations of the classical diffeomorphisms which preserve the two-dimensional noncommutative gravity actions.Comment: 14 pages, no figures, LaTe

    Solutions of Klein--Gordon and Dirac equations on quantum Minkowski spaces

    Full text link
    Covariant differential calculi and exterior algebras on quantum homogeneous spaces endowed with the action of inhomogeneous quantum groups are classified. In the case of quantum Minkowski spaces they have the same dimensions as in the classical case. Formal solutions of the corresponding Klein--Gordon and Dirac equations are found. The Fock space construction is sketched.Comment: 21 pages, LaTeX file, minor change

    On the Decoupling of the Homogeneous and Inhomogeneous Parts in Inhomogeneous Quantum Groups

    Full text link
    We show that, if there exists a realization of a Hopf algebra HH in a HH-module algebra AA, then one can split their cross-product into the tensor product algebra of AA itself with a subalgebra isomorphic to HH and commuting with AA. This result applies in particular to the algebra underlying inhomogeneous quantum groups like the Euclidean ones, which are obtained as cross-products of the quantum Euclidean spaces RqNR_q^N with the quantum groups of rotation Uqso(N)U_qso(N) of RqNR_q^N, for which it has no classical analog.Comment: Latex file, 27 pages. Final version to appear in J. Phys.

    Noncommutative Chiral Anomaly and the Dirac-Ginsparg-Wilson Operator

    Get PDF
    It is shown that the local axial anomaly in 2−2-dimensions emerges naturally if one postulates an underlying noncommutative fuzzy structure of spacetime . In particular the Dirac-Ginsparg-Wilson relation on SF2{\bf S}^2_F is shown to contain an edge effect which corresponds precisely to the ``fuzzy'' U(1)AU(1)_A axial anomaly on the fuzzy sphere . We also derive a novel gauge-covariant expansion of the quark propagator in the form 1DAF=aΓ^L2+1DAa\frac{1}{{\cal D}_{AF}}=\frac{a\hat{\Gamma}^L}{2}+\frac{1}{{\cal D}_{Aa}} where a=22l+1a=\frac{2}{2l+1} is the lattice spacing on SF2{\bf S}^2_F, Γ^L\hat{\Gamma}^L is the covariant noncommutative chirality and DAa{\cal D}_{Aa} is an effective Dirac operator which has essentially the same IR spectrum as DAF{\cal D}_{AF} but differes from it on the UV modes. Most remarkably is the fact that both operators share the same limit and thus the above covariant expansion is not available in the continuum theory . The first bit in this expansion aΓ^L2\frac{a\hat{\Gamma}^L}{2} although it vanishes as it stands in the continuum limit, its contribution to the anomaly is exactly the canonical theta term. The contribution of the propagator 1DAa\frac{1}{{\cal D}_{Aa}} is on the other hand equal to the toplogical Chern-Simons action which in two dimensions vanishes identically .Comment: 26 pages, latex fil

    Metric Properties of the Fuzzy Sphere

    Full text link
    The fuzzy sphere, as a quantum metric space, carries a sequence of metrics which we describe in detail. We show that the Bloch coherent states, with these spectral distances, form a sequence of metric spaces that converge to the round sphere in the high-spin limit.Comment: Slightly shortened version, no major changes, two new references, version to appear on Letters in Mathematical Physic

    Gauge Theory on Fuzzy S^2 x S^2 and Regularization on Noncommutative R^4

    Full text link
    We define U(n) gauge theory on fuzzy S^2_N x S^2_N as a multi-matrix model, which reduces to ordinary Yang-Mills theory on S^2 x S^2 in the commutative limit N -> infinity. The model can be used as a regularization of gauge theory on noncommutative R^4_\theta in a particular scaling limit, which is studied in detail. We also find topologically non-trivial U(1) solutions, which reduce to the known "fluxon" solutions in the limit of R^4_\theta, reproducing their full moduli space. Other solutions which can be interpreted as 2-dimensional branes are also found. The quantization of the model is defined non-perturbatively in terms of a path integral which is finite. A gauge-fixed BRST-invariant action is given as well. Fermions in the fundamental representation of the gauge group are included using a formulation based on SO(6), by defining a fuzzy Dirac operator which reduces to the standard Dirac operator on S^2 x S^2 in the commutative limit. The chirality operator and Weyl spinors are also introduced.Comment: 39 pages. V2-4: References added, typos fixe

    Perturbative Symmetries on Noncommutative Spaces

    Full text link
    Perturbative deformations of symmetry structures on noncommutative spaces are studied in view of noncommutative quantum field theories. The rigidity of enveloping algebras of semi-simple Lie algebras with respect to formal deformations is reviewed in the context of star products. It is shown that rigidity of symmetry algebras extends to rigidity of the action of the symmetry on the space. This implies that the noncommutative spaces considered can be realized as star products by particular ordering prescriptions which are compatible with the symmetry. These symmetry preserving ordering prescriptions are calculated for the quantum plane and four-dimensional quantum Euclidean space. Using these ordering prescriptions greatly facilitates the construction of invariant Lagrangians for quantum field theory on noncommutative spaces with a deformed symmetry.Comment: 16 pages; LaTe
    • 

    corecore