267 research outputs found

    Prevalence of micronutrient deficiency in popular diet plans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Research has shown micronutrient deficiency to be scientifically linked to a higher risk of overweight/obesity and other dangerous and debilitating diseases. With more than two-thirds of the U.S. population overweight or obese, and research showing that one-third are on a diet at any given time, a need existed to determine whether current popular diet plans could protect followers from micronutrient deficiency by providing the minimum levels of 27 micronutrients, as determined by the U.S. Food and Drug Administrations (FDA) Reference Daily Intake (RDI) guidelines.</p> <p>Methods</p> <p>Suggested daily menus from four popular diet plans (<it>Atkins for Life </it>diet, <it>The South Beach Diet</it>, <it>the DASH diet</it>, <it>the DASH diet</it>) were evaluated. Calorie and micronutrient content of each ingredient, in each meal, were determined by using food composition data from the U.S. Department of Agriculture Nutrient Database for Standard Reference. The results were evaluated for sufficiency and total calories and deficient micronutrients were identified. The diet plans that did not meet 100% sufficiency by RDI guidelines for each of the 27 micronutrients were re-analyzed; (1) to identify a micronutrient sufficient calorie intake for all 27 micronutrients, and (2) to identify a second micronutrient sufficient calorie intake when consistently low or nonexistent micronutrients were removed from the sufficiency requirement.</p> <p>Results</p> <p>Analysis determined that each of the four popular diet plans failed to provide minimum RDI sufficiency for all 27 micronutrients analyzed. The four diet plans, on average, were found to be RDI sufficient in (11.75 ± 2.02; mean ± SEM) of the analyzed 27 micronutrients and contain (1748.25 ± 209.57) kcal. Further analysis of the four diets found that an average calorie intake of (27,575 ± 4660.72) would be required to achieve sufficiency in all 27 micronutrients. Six micronutrients (vitamin B7, vitamin D, vitamin E, chromium, iodine and molybdenum) were identified as consistently low or nonexistent in all four diet plans. These six micronutrients were removed from the sufficiency requirement and additional analysis of the four diets was conducted. It was determined that an average calorie content of (3,475 ± 543.81) would be required to reach 100% sufficiency in the remaining 21 micronutrients.</p> <p>Conclusion</p> <p>These findings are significant and indicate that an individual following a popular diet plan as suggested, with food alone, has a high likelihood of becoming micronutrient deficient; a state shown to be scientifically linked to an increased risk for many dangerous and debilitating health conditions and diseases.</p

    Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material

    Get PDF
    PURPOSE. The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. METHODS. Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. RESULTS. Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. CONCLUSIONS. hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation

    Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity.

    Get PDF
    Most monogenic cases of obesity in humans have been linked to mutations in genes encoding members of the leptin-melanocortin pathway. Specifically, mutations in MC4R, the melanocortin-4 receptor gene, account for 3-5% of all severe obesity cases in humans1-3. Recently, ADCY3 (adenylyl cyclase 3) gene mutations have been implicated in obesity4,5. ADCY3 localizes to the primary cilia of neurons 6 , organelles that function as hubs for select signaling pathways. Mutations that disrupt the functions of primary cilia cause ciliopathies, rare recessive pleiotropic diseases in which obesity is a cardinal manifestation 7 . We demonstrate that MC4R colocalizes with ADCY3 at the primary cilia of a subset of hypothalamic neurons, that obesity-associated MC4R mutations impair ciliary localization and that inhibition of adenylyl cyclase signaling at the primary cilia of these neurons increases body weight. These data suggest that impaired signaling from the primary cilia of MC4R neurons is a common pathway underlying&nbsp;genetic causes of obesity in humans

    Weight Loss after Roux-en-Y Gastric Bypass in Obese Patients Heterozygous for MC4R Mutations

    Get PDF
    BackgroundHeterozygous mutations in melanocortin-4 receptor (MC4R) are the most frequent genetic cause of obesity. Bariatric surgery is a successful treatment for severe obesity. The mechanisms of weight loss after bariatric surgery are not well understood.MethodsNinety-two patients who had Roux-en-Y gastric bypass (RYGB) surgery were screened for MC4R mutations. We compared percent excess weight loss (%EWL) in the four MC4R mutation carriers with that of two control groups: 8 matched controls and with the remaining 80 patients who underwent RYGB.ResultsFour patients were heterozygous for functionally significant MC4R mutations. In patients with MC4R mutations, the %EWL after RYGB (66% EWL) was not significantly different compared to matched controls (70% EWL) and non-matched controls (60% EWL) after 1 year of follow-up.ConclusionsThis study suggests that patients with heterozygous MC4R mutations also benefit from RYGB and that weight loss may be independent of the presence of such mutations

    HMG1A and PPARG are differently expressed in the liver of fat and lean broilers

    Get PDF
    The expression of nine functional candidates for QT abdominal fat weight and relative abdominal fat content was investigated by real-time polymerase chain reaction (PCR) in the liver, adipose tissue, colon, muscle, pituitary gland and brain of broilers. The high mobility group AT-hook 1 (HMG1A) gene was up-regulated in liver with a ratio of means of 2.90 (P ≤ 0.01) in the «fatty» group (relative abdominal fat content 3.5 ± 0.18%, abdominal fat weight 35.4 ± 6.09 g) relative to the «lean» group (relative abdominal fat content 1.9 ± 0.56%, abdominal fat weight 19.2 ± 5.06 g). Expression of this gene was highly correlated with the relative abdominal fat content (0.70, P ≤ 0.01) and abdominal fat weight (0.70, P ≤ 0.01). The peroxisome proliferator-activated receptor gamma (PPARG) gene was also up-regulated in the liver with a ratio of means of 3.34 (P ≤ 0.01) in the «fatty» group relative to the «lean» group. Correlation of its expression was significant with both the relative abdominal fat content (0.55, P ≤ 0.05) and the abdominal fat weight (0.57, P ≤ 0.01). These data suggest that the HMG1A and PPARG genes were candidate genes for abdominal fat deposition in chickens. Searching of rSNPs in regulatory regions of the HMG1A and PPARG genes could provide a tool for gene-assisted selection

    Combination Therapies Targeting Alk-Aberrant Neuroblastoma in Preclinical Models.

    Get PDF
    BACKGROUND: ALK activating mutations are identified in approximately 10% of newly diagnosed neuroblastomas and ALK amplifications in a further 1-2% of cases. Lorlatinib, a third generation ALK inhibitor, will soon be given alongside induction chemotherapy for children with ALK-aberrant neuroblastoma. However, resistance to single agent treatment has been reported and therapies that improve the response duration are urgently required. We studied the preclinical combination of lorlatinib with chemotherapy, or with the MDM2 inhibitor, idasanutlin, as recent data has suggested that ALK inhibitor resistance can be overcome through activation of the p53-MDM2 pathway. AIMS: To study the preclinical activity of ALK inhibitors alone and combined with chemotherapy or idasanutlin. METHODS: We compared different ALK inhibitors in preclinical models prior to evaluating lorlatinib in combination with chemotherapy or idasanutlin. We developed a triple chemotherapy (CAV: cyclophosphamide, doxorubicin and vincristine) in vivo dosing schedule and applied this to both neuroblastoma genetically engineered mouse models (GEMM) and patient derived xenografts (PDX). RESULTS: Lorlatinib in combination with chemotherapy was synergistic in immunocompetent neuroblastoma GEMM. Significant growth inhibition in response to lorlatinib was only observed in the ALK-amplified PDX model with high ALK expression. In this PDX lorlatinib combined with idasanutlin resulted in complete tumor regression and significantly delayed tumor regrowth. CONCLUSION: In our preclinical neuroblastoma models, high ALK expression was associated with lorlatinib response alone or in combination with either chemotherapy or idasanutlin. The synergy between MDM2 and ALK inhibition warrants further evaluation of this combination as a potential clinical approach for children with neuroblastoma

    Genetic association study of adiposity and melanocortin-4 receptor (MC4R) common variants: Replication and functional characterization of non-coding regions

    Get PDF
    Common genetic variants 3′ of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3′ LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 309 LD block (farther from MC4R ) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression. © 2014 Evans et al

    Vitamin D status is inversely associated with markers of risk for type 2 diabetes: A population based study in Victoria, Australia

    Get PDF
    A growing body of evidence suggests a protective role of Vitamin D on the risk of type 2 diabetes mellitus (T2DM). We investigated this relationship in a population sample from one Australian state. The data of 3,393 Australian adults aged 18±75 years who participated in the 2009±2010 Victorian Health Monitor survey was analyzed. Socio-demographic information, biomedical variables, and dietary intakes were collected and fasting blood samples were analyzed for 25, hydroxycholecalciferol (25OHD), HbA1c, fasting plasma glucose (FPG), and lipid profiles. Logistic regression analyses were used to evaluate the association between tertiles of serum 25OHD and categories of FPG (&lt;5.6 mmol/L vs. 5.6±6.9 mmol/L), and HbA1c (&lt;5.7% vs. 5.7±6.4%). After adjusting for social, dietary, biomedical and metabolic syndrome (MetS) components (waist circumference, HDL cholesterol, triglycerides, and blood pressure), every 10 nmol/L increment in serum 25OHD significantly reduced the adjusted odds ratio (AOR) of a higher FPG [AOR 0.91, (0.86, 0.97); p = 0.002] and a higher HbA1c [AOR 0.94, (0.90, 0.98); p = 0.009]. Analysis by tertiles of 25OHD indicated that after adjustment for socio-demographic and dietary variables, those with high 25OHD (65±204 nmol/L) had reduced odds of a higher FPG [AOR 0.60, (0.43, 0.83); p = 0.008] as well as higher HbA1c [AOR 0.67, (0.53, 0.85); p = 0.005] compared to the lowest 25OHD (10±44 nmol/L) tertile. On final adjustment for other components of MetS, those in the highest tertile of 25OHD had significantly reduced odds of higher FPG [AOR 0.61, (0.44, 0.84); p = 0.011] and of higher HbA1c [AOR 0.74, (0.58, 0.93); p = 0.041] vs. low 25OHD tertile. Overall, the data support a direct, protective effect of higher 25OHD on FPG and HbA1c; two criteria for assessment of risk of T2DM

    Physical activity and colon cancer prevention: a meta-analysis

    Get PDF
    Although an inverse association between physical activity and risk of colon cancer is well established, a formal estimate of the magnitude of this risk reduction that includes recent studies is not available. This analysis examines the association by sex and study design, restricting analyses to studies where data for colon cancer alone were available. The authors reviewed published studies through June 2008 examining the association between physical activity and risk of colon cancer. Heterogeneity and publication bias were evaluated and random effects models used to estimate relative risks (RR). Differences by sex and study design were evaluated. A total of 52 studies were included. An inverse association between physical activity and colon cancer was found with an overall relative risk (RR) of 0.76 (95% confidence interval (CI): 0.72, 0.81). For men, the RR was 0.76 (95% CI: 0.71, 0.82); for women, this was little different, (RR=0.79, 95% CI: 0.71, 0.88). The findings from case–control studies were stronger (RR=0.69, 95% CI: 0.65, 0.74) than for cohort studies (RR=0.83, 95% CI: 0.78, 0.88). This study confirms previous studies reporting an inverse association between physical activity and colon cancer in both men and women, and provides quantitative estimates of the inverse association
    • …
    corecore